Inligting

Is dit moontlik om 'n brein met elektromagnetiese golwe te beïnvloed?

Is dit moontlik om 'n brein met elektromagnetiese golwe te beïnvloed?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

'n Menslike brein kan elektriese sein genereer. Dit genereer dus ook magnetiese veld. Is dit moontlik om 'n brein met elektromagnetiese golwe te beïnvloed?


Mens kan transkraniale magnetiese stimulasie gebruik om neurale aktiwiteit te moduleer. Dit veroorsaak effektief 'n stroom in die weefsel onder 'n magnetiese spoel.


Geheime van verstand en werklikheid - MindReality.com

Ontvang " Matrix of Mind Reality - Sien die wêreld in kode" e-boek as my gratis geskenk aan jou!

Meld hier aan:

REALITY MAGI Facebook

Die REALITY MAGI Facebook-bladsy is aanlyn! Ek het dit geskep sodat ek kontak kan maak met almal wat weet van Mind Reality. LIKE hierdie bladsy as jy MEER geheime van die heelal onthul wil leer!

Werklikheidskeppingsgeheime!
Ontgin die uiteindelike krag van die heelal en ervaar 'n lewe van superrykdom, vryheid en totale geluk!

Uberman-krag!
Gaan diep in die konyngat, leer kragtige nuwe tegnieke om die lewe te skep wat jy wil hê, word super!

Groot Genius webwerf!
Ontdek soveel meer inligting op my ander webwerf terwyl ek Groot Geniale Insigte In Alles deel!

REALITY MAGI
REALITY MAGI is die moedermaatskappy van Mind Reality. Word 'n Meester Magi in die skep van jou eie lot en werklikheid!


Elektriese en magnetiese velde

Elektriese en magnetiese velde (EMF's) is onsigbare gebiede van energie, wat dikwels na verwys word as straling, wat geassosieer word met die gebruik van elektriese krag en verskeie vorme van natuurlike en mensgemaakte beligting. EMF'e word tipies in een van twee kategorieë gegroepeer volgens hul frekwensie:

  • Nie-ioniserende: laevlak bestraling wat oor die algemeen as skadeloos vir mense beskou word
  • Ioniserende: hoëvlakbestraling wat die potensiaal het vir sellulêre en DNA-skade
  • Uiters lae frekwensie (ELF)
  • Radiofrekwensie (RF)
  • Mikrogolwe
  • Visuele lig
  • Mikrogolfoonde
  • Rekenaars
  • Huis energie slim meters
  • Draadlose (wifi) netwerke
  • Selfone
  • Bluetooth-toestelle
  • Kragdrade
  • MRI's
  • Ultraviolet (UV)
  • X-strale
  • Gamma
  • Sonlig
  • X-strale
  • Sommige gammastrale

Kan EMF's skadelik vir my gesondheid wees?

Gedurende die 1990's het die meeste EMF-navorsing gefokus op uiters lae frekwensie-blootstellings wat voortspruit uit konvensionele kragbronne, soos kraglyne, elektriese substasies of huishoudelike toestelle. Terwyl sommige van hierdie studies 'n moontlike verband tussen EMF-veldsterkte en 'n verhoogde risiko vir kinderleukemie getoon het, het hul bevindinge aangedui dat so 'n assosiasie swak was. Die paar studies wat op volwassenes gedoen is, toon geen bewyse van 'n verband tussen EMF-blootstelling en volwasse kankers, soos leukemie, breinkanker en borskanker nie.

Nou, in die era van sellulêre telefone, draadlose routers en die internet van dinge, wat almal EMF gebruik, bestaan ​​daar kommer oor moontlike verbande tussen EMF en nadelige gesondheidseffekte. Hierdie blootstellings word aktief bestudeer deur NIEHS beveel voortgesette onderwys aan oor praktiese maniere om blootstelling aan EMK's te verminder.

Stuur my selfoon EMF-straling uit?

Selfone straal 'n vorm van radiofrekwensiestraling aan die onderkant van die nie-ioniserende stralingspektrum uit. Tans het wetenskaplike bewyse nie die gebruik van selfoon afdoende met enige nadelige menslike gesondheidsprobleme verbind nie, alhoewel wetenskaplikes erken dat meer navorsing nodig is.

Die Nasionale Toksikologieprogram (NTP), met sy hoofkwartier by NIEHS, het pas die grootste dierestudie tot nog toe oor selfoonradiofrekwensieblootstelling voltooi. Vir 'n opsomming van die bevindinge, besoek asseblief ons persverklaring en die NTP Selfoon Radio Frequency Radiation webblad.

Wat as ek naby 'n kraglyn woon?

EMF: Elektriese en magnetiese velde wat verband hou met die gebruik van elektriese krag boekie

Dit is belangrik om te onthou dat die sterkte van 'n magneetveld dramaties afneem met toenemende afstand vanaf die bron. Dit beteken dat die sterkte van die veld wat 'n huis of struktuur bereik, aansienlik swakker sal wees as wat dit by sy oorsprong was.

Byvoorbeeld, 'n magneetveld wat 57,5 ​​milligauss meet direk langs 'n 230 kilovolt transmissielyn meet net 7,1 milligauss op 'n afstand van 100 voet, en 1,8 milligauss op 'n afstand van 200 voet, volgens die Wêreldgesondheidsorganisasie in 2010.

Vir meer inligting, sien die NIEHS opvoedkundige boekie, &ldquoEMF: Electric and Magnetic Fields Associated with the Use of Electric Power&rdquo. Hierdie boekie, wat in 2002 voorberei is, bevat die mees onlangse NIEHS-navorsing oor gesondheid en kraglyn elektriese en magnetiese velde.

Hoe kan ek uitvind of ek aan EMF'e blootgestel word?

As jy bekommerd is oor EMF'e wat deur 'n kraglyn of substasie in jou area vrygestel word, kan jy jou plaaslike kragmaatskappy kontak om 'n lesing op die perseel te skeduleer. Jy kan ook self EMF'e meet met die gebruik van 'n gaussmeter, wat aanlyn by 'n aantal kleinhandelaars beskikbaar is.


Hoe draadlose tegnologie die liggaam kan beïnvloed

Die meeste mense dink nie twee keer daaraan om te praat, SMS of e-pos te stuur nie – om golwe van straling in die omgewing en hul liggame te stuur terwyl hulle deur middel van mobiele tegnologie verbind bly.

Die meeste navorsing oor selfone en hul basistorings het geen definitiewe bewyse gevind dat korttermyngebruik aansienlike gesondheidsrisiko's vir mense inhou nie. Dus, beleidmakers het die industrie die groen lig gegee, sodat die gebruik van draadlose toerusting oor die hele wêreld kan ontplof, tot ongeveer vyf miljard draadlose intekeninge wêreldwyd, volgens die Wêreldgesondheidsorganisasie se skatting.

Noudat die tegnologie vir 'n aantal jare wyd gebruik word, het navorsers hul aandag daarop gerig om moontlike gevolge van langtermynblootstelling aan die elektromagnetiese velde (EMK) te ondersoek wat die radiofrekwensiegolwe wat gebruik word om selfoonkommunikasie te stuur, skep.

In Mei 2011 het die WGO se Internasionale Agentskap vir Navorsing oor Kanker 'n oorsig gedoen van bestaande navorsing oor die uitwerking van blootstelling aan sulke elektromagnetiese velde. Dit het bevind dat die beskikbare bewyse vir die meeste kankers onvoldoende was om enige gevolgtrekkings oor risiko te maak.

In die geval van glioom, 'n tipe breinkanker, en akoestiese neuroom, 'n stadig groeiende nie-kankeragtige gewas in die binneoor wat gehoorverlies tot gevolg het, was die bestaande bewyse beperk. Dit beteken die groep het bevind dat bewyse van 'n oorsaaklike verband tussen blootstelling aan selfoonstraling en verhoogde risiko om een ​​van daardie siektes te ontwikkel geloofwaardig was, maar kon nie uitsluit dat toeval of vooroordeel 'n rol gespeel het in die vestiging van daardie verband nie.

Nietemin het die groep bevind dat in die geval van glioom, die bewyse betekenisvol genoeg was om radiofrekwensie-elektromagnetiese velde te klassifiseer as "moontlik kankerverwekkend vir mense", 'n WGO-kategorie bekend as 2B, en om verdere studie van 'n moontlike verband tussen draadlose gebruik te regverdig. en kankerrisiko, het die groep gesê.

Om dit in perspektief te help plaas, word koffie en die plaagdoder DDT ook geklassifiseer as "moontlik kankerverwekkend vir mense."

Vroeëre resensies van navorsing wat deur die Europese Kommissie en deur Sweedse wetenskaplikes gedoen is, wie se resultate in die vaktydskrif Occupational and Environmental Medicine gepubliseer is, het bewyse gevind van verhoogde relatiewe risiko van glioom en akoestiese neuromas ná meer as 10 jaar van selfoongebruik. Maar hierdie studies het ook gesê dat die meerderheid vraestelle oor die onderwerp geen verband tussen 10 jaar van selfoongebruik en siekte gerapporteer het nie.

Nog 'n studie - gepubliseer 27 Julie 2011, in die Journal of the National Cancer Institute - het gekyk na kinders van Noorweë, Denemarke, Swede en Switserland, tussen die ouderdomme van 7 tot 19. Dit het bevind dat diegene met breingewasse nie statisties meer geneig was om te gewees het gereelde selfoongebruikers as die kontrolevakke.

Ondersteunende data aan weerskante van die debat is beperk. Health Canada, die Food and Drug Administration in die VSA en die Europese Unie het hul selfoonregulasies gebaseer op die meeste bewyse wat tot dusver beskikbaar is.

Wie gebruik draadloos

Selfoontegnologie is reeds stewig ingeburger in die Kanadese kultuur - veral in stedelike sentrums. Meer as 24 miljoen van ons het teen die einde van 2010 selfone gebruik, volgens Health Canada.

Die Kanadese Wireless Telecommunications Association het geraam dat 70 persent van mense in groot stedelike sentrums in Kanada draadlose telekommunikasietegnologie gebruik, met sommige gebiede wat die 80 persent-kerf nader.

Om stemoproepe op mobiele toestelle te plaas eerder as om e-pos te stuur of SMS'e te stuur, wek potensiële gesondheidsbekommernisse, want 'n gebruiker se vlak van blootstelling aan radiofrekwensie-energie is hoër tydens 'n oproep. Om op 'n selfoon te praat, verg baie meer krag as om SMS'e of ander inligting te stuur en te ontvang, en die selfoon word gewoonlik nader aan jou liggaam gehou wanneer jy praat as wanneer jy die toestel vir ander doeleindes gebruik.

Die hoeveelheid bestraling - in hierdie geval, elektromagnetiese golwe wat deur selfone uitgestraal word - wat jou liggaam binnedring, is grootliks gebaseer op hoe naby die toestel aan jou kop is tydens oproepe, die aantal telefoonoproepe wat jy maak en hoe lank jou oproepe duur.

Is dit alles in ons koppe?

Volgens die WGO, Health Canada, die FDA en die EC-verslag het die grootste deel van wetenskaplike navorsing geen beduidende verband tussen selfoongebruik en nadelige gesondheidseffekte gevind nie.

Die EG-navorsingsoorsig het wel bewyse gevind dat radiofrekwensie-energie plaaslike temperatuurveranderinge in die brein kan veroorsaak, proteïenstruktuur en uitdrukking kan verander en neurotransmitterbiochemie kan beïnvloed.

’n Kwestie van mag

As selfone golwe soortgelyk in frekwensie as mikrogolfoonde uitstraal, en ons hou selfone naby ons koppe, kan ons dalk ons ​​skedelbek gaarmaak?

Volgens die Verenigde Koninkryk se gesondheidsbeskermingsagentskap is die maksimum temperatuurstyging in die kop as gevolg van die absorpsie van energie vanaf 'n selfoon ongeveer 0,1ºC - ver van wat 'n mikrogolfoond doen tot 'n bevrore aandete.

Tony Muc, 'n assistent-professor aan die Universiteit van Toronto en die hooffisikus by Toronto-gebaseerde Radiation Health and Safety Consulting, het verduidelik die verskil lê in die hoeveelheid krag wat elke toestel gebruik. Die meeste selfone werk teen kragvlakke wat wissel van 0,2 tot 0,6 watt.

Die gemiddelde huishoudelike mikrogolf genereer 500 tot 1 000 watt, volgens die B.C. Sentrum vir Siektebeheer.

Muc het gesê dat, met 'n selfoon, " jy hierdie klein bron aangedryf het deur 'n battery wat jy binne 'n sentimeter van jou kop hou, wat ongeveer 1 000 keer swakker is [as 'n mikrogolfoond].

"So die netto effek [van 'n selfoon] is steeds weglaatbaar — net soos die netto effek van die mikrogolfoond weglaatbaar is, want al is dit sterker, is jy verder weg."

Daar kan aangevoer word dat terwyl elektromagnetiese velde, die basis vir sellulêre kommunikasie, omvattend bestudeer is, mobiele tegnologie uniek is omdat selfone so naby aan ons liggame gebruik word. Nietemin sê Muc dat dekades se navorsing oor elektromagnetiese velde ons genoeg inligting gegee het om "die voorsorgbeginsel" te verwerp as die beste manier van aksie wanneer dit by draadlose kommunikasie kom.

Beide die EG en die Beroeps- en Omgewingsgeneeskunde-studies het bewyse gevind dat selfoonbestraling moontlik sekere menslike gedrag, soos aandag en geheue, kan beïnvloed.

Die EC-verslag het ook vorige navorsing oor 'n moontlike verband tussen selfoongebruik en breingewasse by kinders hersien en tot die gevolgtrekking gekom dat verdere ondersoek na die kwessie "geregverdig" is gegewe die wydverspreide gebruik van selfone onder kinders en adolessente en die gebrek aan relevante studies wat na moontlike gevolge kyk. op hierdie groep.

Die VK, Duitsland, België, Israel, Rusland, Frankryk en Indië beveel aan dat kinders hul gebruik van selfone beperk.

In Oktober 2011 het Health Canada sy vorige riglyn effens verander om Kanadese aan te moedig om selfoonoproepe te beperk, veral dié onder die ouderdom van 18.

Voorheen het Health Canada gesê mense kan hul gebruik beperk as hulle bekommerd is oor 'n moontlike verband tussen selfone en kanker.

James McNamee, afdelingshoof vir gesondheidseffekte en assesserings in Health Canada se buro vir verbruikers- en kliniese bestralingsbeskerming, het gesê die agentskap probeer meer proaktief wees oor sy boodskap vir kinders.

"Daar is betreklik min wetenskap oor kinders en kinders se selfoongebruik gedoen, en kinders gaan hierdie toestelle vir 'n baie groter tydperk van hul lewensduur gebruik,", het McNamee gesê. "Hulle breine en immuunstelsels is steeds besig om te ontwikkel."

Health Canada het gesê selfoongebruikers kan praktiese stappe neem om blootstelling te verminder, soos:

  • Beperk die lengte van selfoonoproepe.
  • Vervang selfoonoproepe met teksboodskappe of gebruik "handsfree" toestelle.
  • Moedig diegene onder die ouderdom van 18 aan om die selfoongebruik te beperk.

Met navorsers wat nie die tydlyn, en dus die data, het nie, om 'n definitiewe standpunt in te neem oor die langtermyn-gesondheidseffekte van mobiele telekommunikasie, sê sommige organisasies, soos lede van die BioInitiative-verslag, die Europese Omgewingsagentskap en die EMR-beleidsgroep. huidige wette wat die gebruik van elektromagnetiese toestelle reguleer, moet heroorweeg word.

Hulle standpunt, wat volgens hulle "die voorsorgbeginsel" volg, is dat as ons nie seker kan wees dat iets nie 'n negatiewe impak op ons gesondheid sal hê nie, ons aan die kant van versigtigheid moet dwaal.


Kort antwoord
Breingolwe is nie elektromagnetiese golwe nie.

Lang antwoord
Gemete breinaktiwiteit, soos jy reeds genoem het, is die resultaat van individuele neurone wat afvuur. Die aktiwiteit bestaan ​​in werklikheid uit twee dele. Eerstens is daar die aksiepotensiale (AP's). AP's is stroomvloei binne 'n neuron van die een kant na die ander. Die omvang van hierdie AP's (en die opsomming van baie) is egter so laag dat dit skaars meetbaar is.

Die werklike breinaktiwiteit wat ons kan meet, is die resultaat van die tweede manier van seingeleiding: post-sinaptiese potensiale as gevolg van neurotransmitters. (Piramidale) Neurone kommunikeer met mekaar deur middel van neuro-oordragstowwe, wat uit verskeie sinapse vrygestel word en na die akson van die volgende neuron vloei. Die vrystelling van die neuro-oordragstowwe veroorsaak 'n veel groter potensiaalverskil wat deur verskillende weefsels (bv. bene en vel) gelei word. Die aktiwiteit wat ons met EEG meet is dus slegs die resultaat van potensiaalverskil van die piramidale neurone. As gevolg van hoe elektriese velde werk, kan ons slegs die neurone meet wat reghoekig met die oppervlak van die kopvel georiënteer is (sien die regte prentjie).

'n Magneetveld kan egter ook gemeet word, maar dit is in werklikheid die gevolg van die vloei in stroom. As elektrisiteit deur 'n lus vloei, word 'n magneetveld opgewek. Verder, as daar 'n magnetiese veld is, sal elektriese stroom opgewek word. Dit is hoe MEG werk. As daar 'n elektriese stroom is, en jy plaas hierdie lusse om die kop, sal die magnetiese veld " vasgevang" word. Dan, op sy beurt, sal hierdie magneetveld elektrisiteit in die MEG-opneemtoerusting opwek, en daardeur elektriese aktiwiteit in die brein aanteken (Sien linkerdeel van die prentjie, daar is twee lusse waar die magneetveld deurgaan). Die magnetiese velde is ortogonaal tot die elektriese velde (kyk vir die Regterhand-reël) en neurone wat parallel aan die kopvel lê, is makliker meetbaar. EEG en MEG vul mekaar dus aan, en die kombinasie daarvan verbeter die lokalisering van aktiwiteit aansienlik.

Dit is 'n vinnige en vuil verduideliking. Vir 'n beter een, wil jy dalk die boek van Luck: An Introduction to the Event-Related Potential Technique (2014) lees, wat dit baie mooi verduidelik.

Kort antwoord
Breingolwe word tipies geassosieer met die elektroenkefalogram, wat 'n sein is wat hoofsaaklik bestaan ​​uit potensiaalverskille wat in die oppervlakkige lae van die brein gegenereer word. Potensiële verskille verteenwoordig elektriese velde en verteenwoordig nie elektromagnetiese (EM) straling nie. EM-straling is opbou van pakkies energie (fotone). EM-stralingstipes word gekenmerk en geklassifiseer deur hul spesifieke golflengtes, maar dit het niks met breingolwe te doen nie.

Agtergrond
Benewens Robin Kramer se uitstekende antwoord wil ek hierdie vraag vanuit 'n meer terminologiese benadering benader, naamlik wat is breingolwe?

Breingolf is 'n bietjie van 'n omgangstaal term. Dit word tipies geassosieer met die elektro-enfalogram (EEG). Die EEG meet elektriese potensiaalverskille, tipies oor die kopvel (Fig. 1). Hierdie elektriese aktiwiteit wat uit die brein voortspruit, word in die vorm van breingolwe vertoon. Daar is vier kategorieë van hierdie breingolwe. Hierdie kategorieë is gebaseer op frekwensiebande. Die term frekwensiebande is 'n meer formele term en verwys na die manier waarop EEG's tipies ontleed word, naamlik via Fourier-transformasie. Fourier-transformasie dissekteer enige tydgebaseerde sein in 'n aantal goed gedefinieerde sinusgolwe, elk met 'n kenmerkende frekwensie, uitgedruk in siklusse per sekonde (m.a.w., Hz).

Wanneer die brein opgewek en aktief betrokke is by geestelike aktiwiteite, genereer dit beta golwe. Hierdie beta-golwe het 'n relatief lae amplitude, en is die vinnigste van die vier verskillende breingolwe (15 tot 40 Hz frekwensieband). Alfa golwe (9 - 14 Hz) verteenwoordig nie-opwekking, is stadiger en hoër in amplitude. 'n Persoon wat 'n taak voltooi het en gaan sit om te rus, is dikwels in 'n alfa-toestand. Die volgende staat, theta breingolwe (5 - 8 Hz), is tipies van selfs groter amplitude en stadiger frekwensie. Hierdie frekwensiereeks is gewoonlik tussen 5 en 8 siklusse per sekonde. 'n Persoon wat verlof geneem het van 'n taak en begin dagdroom, is dikwels in 'n theta-breingolftoestand. 'n Persoon wat op 'n snelweg ry, en ontdek dat hulle nie die laaste vyf myl kan onthou nie, is dikwels in 'n theta-toestand wat veroorsaak word deur die proses van snelwegry. Die finale breingolftoestand is delta (1,5 - 4 Hz). Hier is die breingolwe van die grootste amplitude en stadigste frekwensie. 'n Diep, droomlose slaap word deur hierdie frekwensieband gekenmerk. Wanneer ons 'n nag se slaap gaan, daal breingolwe tipies van beta, na alfa, na theta en uiteindelik, wanneer ons aan die slaap raak, na delta (bron: Sci Am, 1997).

EEG-aktiwiteit word via elektrodes gemeet en dit tel 'n potensiaalverskil, of elektriese veld op. 'n Elektriese veld is nie elektromagneties (EM) nie, want dit word nie (noodwendig) vergesel van 'n magnetiese komponent nie. 'n Elektriese veld word oral opgewek waar lading geskei word. As geen stroom vloei nie, is daar steeds 'n elektriese veld, naamlik 'n statiese elektriese veld. Slegs wanneer stroom begin vloei word 'n magnetiese komponent ingestel (bron: WGO). In die brein kan statiese elektriese velde bestaan, maar EEG-aktiwiteit word tipies opgewek deur herhalende, gesinchroniseerde neurale afvuur. Binne die weefsel vloei stroom dus tydens aksiepotensiaalgenerering en dus is daar beslis 'n magnetiese komponent betrokke, dit word gemeet met 'n magneto-enfalogram (MEG).

MEG meet magnetiese velde en word tipies nie in die vorm van breingolwe ontleed nie, maar in die vorm van breinbeelde (Fig. 2).


Fig. 2. MEG-analise. bron: NYU Cognitive Neurophysiology Lab

MEG seine is ook nie EM-straling, maar magnetiese seine.

Ten slotte, wat is dan EM bestraling? EM-straling is a vorm van energie wat geproduseer word deur ossillerende elektriese en magnetiese versteuring, of deur die beweging van elektries gelaaide deeltjies deur 'n vakuum of saak te reis. Die elektriese en magnetiese velde kom reghoekig op mekaar en gekombineerde golf beweeg loodreg op beide magnetiese en elektriese ossillerende velde dus die versteuring. Elektronstraling word vrygestel as fotone, wat bondels ligenergie is wat teen die spoed van lig beweeg as gekwantiseerde harmoniese golwe. Hierdie energie word dan in kategorieë gegroepeer gebaseer op sy golflengte in die elektromagnetiese spektrum. Hierdie elektriese en magnetiese golwe beweeg loodreg op mekaar en het sekere eienskappe, insluitend amplitude, golflengte en frekwensie (Fig. 3).

Dit is belangrik dat EM-bestraling óf kan optree as 'n golf of a deeltjie, naamlik a foton. As 'n golf word dit voorgestel deur snelheid, golflengte en frekwensie. As 'n deeltjie word EM voorgestel as 'n foton, wat energie vervoer. Fotone met hoër energie produseer korter golflengtes en fotone met laer energie produseer langer golflengtes.

As "breingolwe" 'n tydveranderende elektriese potensiaal produseer soos op die EEG getoon, dan is daar sover ek weet elektromagnetiese golwe teenwoordig. Ek is geleer dat jy nie 'n tyd kan hê wat elektriese potensiaal wissel sonder om 'n elektromagnetiese golf te skep nie. Jy kan probeer om wiki-verduideliking te blaai https://en.wikipedia.org/wiki/Maxwell%27s_equations, maar die hoofgedagte is dat 'n tydvarierende elektriese veld nie kan bestaan ​​sonder die teenwoordigheid van 'n tydveranderende magnetiese veld nie. Ek erken ek het basies geen agtergrondkennis oor breingolwe nie, maar nadat ek die twee vorige deeglike antwoorde gelees het, het ek gewonder hoekom 'n breingolf nie in die kategorie van elektromagnetiese golwe sou val nie.

"'n Elektriese veld is nie elektromagneties (EM), want dit word nie (noodwendig) vergesel van 'n magnetiese komponent nie." Dit is teoreties waar vir statiese elektriese velde, maar ek dink statiese elektriese velde is soortgelyk aan 'n "vakuumtoestand" in die sin dat hulle nie in die werklike lewe bestaan ​​nie, of selfs al sou dit regtig moeilik wees om te meet sonder om die stelsel.

Golwe is nie staties nie en daarom toon die EEG beslis 'n tydveranderende elektriese veld.

Streng vanuit 'n oogpunt in fisika is daar net 4 fundamentele interaksies: gravitasie, elektromagnetiese, swak interaksie en sterk interaksie.

Die swak en sterk interaksies bestaan ​​net in sub-atomiese, so hulle sal niks bydra tot breingolf nie. Die gravitasie-interaksie, hoewel teoreties beïnvloed, is uiters klein tot die punt dat dit ook verwaarloos kan word. Daarom is alles wat die brein doen elektromagneties. Trouens, elke chemiese proses kan ook gesê word dat dit suiwer elektromagneties is.

Ek moet beklemtoon dat dit streng 'n fisika-oogpunt is, want ek weet in ander velde, soos biologie of neurowetenskap, is dit onprakties om elke vorm van elektromagnetiese interaksie in een mandjie. Elektriese veld, magnetiese veld, straling, Van de Waals-interaksie, noem maar op, is verskillende vorme van elektromagnetiese interaksie.

Wat nogal verwarrend kan wees, is dat die term in biologie of neurowetenskap elektromagneties kan gebruik word vir 'n vorm van sulke interaksie: die saambestaan ​​van elektriese veld en magnetiese veld. Dit is hoekom ons kan sê dat elektriese veld nie elektromagneties is nie. Dit is, streng uit 'n fisika-oogpunt, verkeerd. Dit is egter net verskillende interpretasies van die term, so bioloë en neurowetenskaplikes kan daardie stelling veilig gebruik.

Dit is 'n belangrike vraag om 'n aantal redes, nie die minste daarvan is die deurdringende samesmelting van "breingolwe" met EM of radiogolwe in populêre media en selfs in sommige artikels in Scientific American. Die drie topgestemde antwoorde op hierdie stadium (Junie 2019) deur Robin Kramer, AliceD en Bobby, hoewel dit blykbaar teenstrydig is, is almal korrek, maar het 'n gebrek aan detail wat die oënskynlike inkonsekwentheid kan oplos.

Om te begin, soos Robin sê en AliceD impliseer, is breingolwe NIE elektromagnetiese (EM) golwe nie breingolwe is die term wat gegee word aan die patrone van spanningsverskille gemeet tussen twee elektrodes wat gekoppel is aan die driedimensionele ekstrasellulêre vloeistofmatriks wat die brein omring (soos pragtig getoon deur Robin). Hierdie matriks sluit die skedel en kopvel van die proefpersoon in, en aangesien die skedel 'n hoë weerstand het, is die stroom wat dit uiteindelik na die kopvel maak redelik klein en produseer 'n baie klein spanning soos dit deur die ietwat weerstandige kopvel tussen die twee elektrodes vloei. . Tydens oopskedelchirurgie is die EEG wat vanaf die breinoppervlak aangeteken is 10-100 keer groter aangesien die stroom nie deur die skedel hoef uit te vloei om die elektrodes te bereik en dan weer terug nie. Hierdie spanningspatrone gaan natuurlik op en af ​​en produseer dus "golwe" in die EEG-rekord van spanning teenoor tyd soos AliceD verduidelik.

Dit is nie dieselfde betekenis van die term "golf" wat in fisika gebruik word om golfverskynsels te beskryf nie, oor die algemeen praat fisici oor golwe as oplossings vir differensiële golfvergelykings, insluitend Maxwell se vergelykings. Slegs in die wydste sin van een of ander moontlike periodisiteit van die verskynsel wat op- en afdraandes in 'n grafiek van die verskynsel teenoor tyd veroorsaak, kan die gemeenskaplikheid van hierdie twee betekenisse van die woord "golf" geïdentifiseer word. Let egter daarop dat fisikus se oplossings vir golfvergelykings redelik algemeen kan wees, en enige kombinasie van oplossingsfunksies kan insluit wat as argumente (ax+bt) en (ax-bt) aanneem wat vorentoe en agtertoe lopende oplossings verteenwoordig. Dus, 'n vierkantige puls sal golfvergelykings oplos, en gegewe dat enige realistiese sein 'n Fourier-voorstelling het, kan gesê word dat enige sein bestaan ​​uit 'n geweegde som van sinus- en cosinus-"golwe" soos beskryf deur AliceD, selfs al is die sein self is nie periodiek nie.

EM-golwe is oplossings vir Maxwell se vergelykings wat energie deur die ruimte dra deur middel van veranderende elektriese en magnetiese velde wat lang afstande kan beweeg van waar hulle gelanseer word en wat met verveldenergie geassosieer word. Hierdie ver-veld-energie word nie meer deur sy bron beïnvloed nie, en ook nie sy lot beïnvloed sy bron nie. Dit is anders as die energie in die elektriese en magnetiese velde wat verband hou met die stroomvloei in die ekstrasellulêre matriks, dit word die naby-veld genoem, en dit bestaan ​​uit die dryfkrag wat die stroomvloei aandryf. Aandag aan besonderhede is belangrik hier EEG's teken nie elektriese velde aan nie, dit teken verskille in potensiaal aan. Potensiaal is 'n skalêre veld met 'n enkele numeriese waarde by elke punt in die ruimte en geen absolute nulpunt nie - dus moet altyd die verskil in spanning (potensiaal) tussen twee punte meet en om verbindings te hê met die ekstrasellulêre vloeistofmatrikskring, terwyl die elektriese veld is 'n vektorveld met 'n grootte en rigting by elke punt in die ruimte. Die elektriese veld is die gradiënt van die potensiaal, en dit is die rigting waarin die stroom in isotropiese ekstrasellulêre vloeistof sal vloei. Verandering van die potensiaal by punte in die ekstrasellulêre matriks sal die naby-veld elektriese veld en dus die driedimensionele patroon van stroomvloei en enige aangetekende potensiaalverskille verander. Breingolwe is hierdie laasgenoemde potensiaalverskille as gevolg van die naby-veld-energie in die elektriese en magnetiese velde, en apart van die ver-veld-effekte van uitgestraalde energie in die vorm van EM-golwe.

Nou wys Bobby daarop dat veranderende potensiaalverskille wat breingolwe verteenwoordig veranderende elektriese velde impliseer wat, soos Maxwell sê, veranderende magnetiese velde produseer, wat weer 'n veranderende elektriese veld genereer, ens - en ons is weg na die resies: 'n EM golf word gelanseer! Of is dit?

'n Mens benodig 'n toestel genaamd 'n antenna om 'n veranderende spanning/stroom na 'n EM-golf oor te dra, en 'n baie basiese reël vir antennas is dat hulle eers beduidende hoeveelhede energie begin omskakel wanneer die grootte van die antenna 1/4 van die golflengte van die sein wat uitgestraal word. So kom ons kyk hoe groot ons antenna sal moet wees vir 'n 10 Hz alfa-golf om uit ons kopvel gelanseer te word. Aangesien EM-golwe teen die spoed van lig beweeg, of 300 000 000 m/s, sal ons kopvel 75 000 000 meter groot moet wees! Ek het nie die vergelykings hier nie, maar dit is redelik duidelik dat in wese nul energie by 10 Hz uitgestraal gaan word. En as mens daardie sein wou opvang, sou die ontvangsantenna ewe groot moes wees! Vyf-en-sewentig Megameters is nogal vrek groot.

Dit is hoekom die EEG-elektrodes aan die kopvel moet raak of andersins aan die werklike stroombaan moet koppel waarin stroom vloei eerder as om net naby geplaas te word om uitgestraalde EM-energie van die brein op te tel. En hoewel dit waar is, kan 'n aantal truuks getrek word (soos wat gedoen word in selfone diëlektriese antennas) om hierdie grootte met miskien 'n faktor van tien te verminder, selfs vir 100Hz of 1000Hz seine, gaan feitlik geen energie uit die kopvel uitstraal nie, EM-golwe sal ook nie opgetel en omgeskakel word in veranderende potensiale op die kopvel vanuit die EM-milieu rondom ons nie. Selfone kan klein wees omdat hulle seine in die reeks van 3 GHz gebruik waar 1/4 van 'n golflengte ongeveer 2,5 cm, of 'n duim is.

Dus, alhoewel daar EM-golwe kan wees wat deur brein-"golwe" geproduseer word, gebeur dit prakties gesproke nie, en kyk in detail na hoe EM-golf uitgestraal word, onthul dat die brein-"golf" in werklikheid 'n ander verskynsel is van enige EM-golf waarmee dit geassosieer kan word of dit kan genereer.

Miskien is die mees bondige manier om die verskil vas te stel om daarop te let dat EM-golwe bestaan ​​uit pakkies energie wat deur die ruimte voortplant via self-regenererende veranderende elektriese en magnetiese velde wat eenhede van volt/meter en ampere/meter het, terwyl brein-"golwe" verskil in spanning tussen twee punte op die kopvel gemeet in Volts - let op dat hulle verskillende eenhede het. Met brein-"golwe" verlaat in wese geen energie die kopvel en straal na die ruimte nie, want die frekwensies is te laag en die kopvel is ver te klein om as 'n effektiewe antenna te dien om dit in EM-golwe om te skakel.


Is dit moontlik om 'n brein met elektromagnetiese golwe te beïnvloed? - Biologie

Ek dink al 'n geruime tyd hieroor en is nou net in aksie geskiet deur 'n opmerking wat ek gemaak het in 'n ander artikel “Building Smarter Artificial Intelligence By. Krimp die liggaam?” Een benadering tot kunsmatige intelligensie is om die aktiwiteite van neurone te modelleer as elektriese stroombane met veelvuldige insette en veelvuldige uitsette. Die model neem aan dat elke individuele neuron slegs daardie ander neurone affekteer waarmee dit direkte kontak by die sinapse het. Maar ons weet ook dat 'n elektriese sein ook 'n elektromagnetiese veld sal genereer. Ons weet dat die brein as 'n geheel dit doen, aangesien ons beide elektro-enkefalogramme (EEG) en magneto-enfalogramme (MEG) het wat die elektriese en magnetiese aktiwiteite van die brein kan meet. Dus, die vraag wat ek wil opper is: Kan neurone met mekaar kommunikeer deur hul elektromagnetiese seine sowel as deur hul sinapse?

Dit is eintlik vier vrae: kan 'n elektromagnetiese veld 'n neuron aktiveer? genereer 'n geaktiveerde neuron 'n elektromagnetiese veld? is daardie veld sterk genoeg om naburige neurone te beïnvloed? en is daardie effek sterk genoeg om inligting te dra? Soos ek hierbo gesê het, weet ons dat die brein as geheel 'n EM-veld genereer, soveel so dat die standaard EEG velde kan meet wat deur die skedel gegaan het. Maar meer onlangse navorsing met intrakraniale EEG's het 'n magdom hoëfrekwensieaktiwiteite aan die lig gebring wat deur die skedel gedemp word. Kom ons kyk eers baie vinnig na 'n neuron.

Die brein en senuweestelsel is wonderlike komplekse strukture waarvan die aktiwiteite geskoei is op die interaksies van neurone. Alhoewel daar uitsonderings is, het die basiese neuron veelvuldige insette (dendriete) en veelvuldige uitsette (een akson met takke). Neurone word deur sinapse aan mekaar verbind. Die sein wat oor die sinaps beweeg, kan óf chemies (met 'n neurotransmitter) óf elektries wees. The signal that passes along a neuron is known as an ion pump as it is created by the movement of electrically charged ions across the neuron's membrane. The signals from the input dendrites are additive and the output axon is only triggered if a minimum activation potential is reached – input signals that are too weak are thus ignored. It is therefore tempting, as a first iteration, to model the information processing capacities of neurons as a complicated sequence of logic gates connected together by conducting wires. However, with an average of one hundred billion neurons, each with an average of 7,000 synaptic connection, the average cranial computer has about 400 trillion connections. This in itself is an onerous task to model.

But the brain is not a mass of insulated wires its electromagnetic activity leaks out enough to be measurable. The average signal measured by a typical EEG is about 10-100 microV compared to 10-20 milliV for a subdural probe – that's over 100 times stronger. The magnetic fields produced by the brain are much weaker and useful measurements have only been possible since the invention of SQUIDs (superconducting quantum interference devices). However, at 10 femtoTeslas (fT) for cortical activity and 103 fT for the human alpha rhythm, the brain's magnetic field is somewhat smaller than the ambient magnetic noise in an urban environment, which is on the order of 108 fT. Great care is needed in such research to screen the room from as much EM radiation as possible.

It is thought that these fields are generated from the current flowing through each neuron EEGs are considered to be the result of extracellular currents along dendrites whereas MEGs are due to intracellular ionic currents. However, these signals are averages of the activities of individual neurons they are the emergent behaviour of billions of neurons - it is thought that about 50,000 neurons are needed to produce a measurable signal with current equipment. Much more research needs to be done in this area. The magnetic signals, in particular, are very weak, and it is currently impossible to isolate the signal of an individual neuron. However, to answer our second question, neurons doen produce electromagnetic fields that extend beyond their physical structure.

It is time to look at what's actually thought to be going on at the level of the single neuron. The paper “Electric and magnetic fields inside neurons and their impact upon the cytoskeletal microtubules” is, I think, very useful in that although rather long it explains some basic electromagnetic theory along the way. It discusses the electromagnetic fields in dendrites, axons and soma, as well as the propagation of the ionic current and the electromagnetic effects at the synapses. Its main focus, however, is on giving a plausible theory on how microtubules may also be able to transmit information. There are still a lot of unknowns and a lot of research to be done. The authors reject outright the ferroelectric model of neurons as these ionic currents are very different to the electron currents in a metal conductor. The EM fields generated are much smaller than would be expected by a current due to a physical flow of charged particles.

What the paper actually focusses on are the interactions between EM fields and the cytoskeleton of a neuron, most importantly the microtubules. That electromagnetic inputs to the cortex have been shown to affect consciousness is proof that neurons can process an EM signal on its own as imparting information. The case of a blind man able to partially see through a camera connected via computer to electrodes implanted directly into his visual cortex goes all the way back to 1978. There was also an experiment in 1988 showing that two unconnected neurons would oscillate synchronously with an applied electric field. This is linked to the controversial topic of the 40Hz gamma wave signal that originates in the thalamus and sweeps across the brain like a metronome. The speed of this signal appears to be too fast to be carried by the ionic neural signal and therefore it seems plausible to look for an alternative. We can therefore answer our first question in the positive that EM fields external to a neuron can activate that neuron as if it had received a signal from its dendritic inputs. The final, and most fascinating, questions are whether the EM fields created by neuronal activity can thereby send signals and information to neighbouring neurons without going through a synaptic information exchange. This could be with neurons with which it has no connections with or it could strengthen, or attenuate, the synaptic signal.

I will try my best to summarize the above paper and then look at possible ways forward. Many people assume that there is no, or little EM field outside the neuron because of the insulating myelin sheath. However, that sheath only covers the axons, not the dendrites, and secondly it is not a continuous sheath (like around an electrical cable) but is a string of small sheaths with gaps in between them. This apparently allows for better conductivity in pulses but also means there is ionic activity at these nodes of Ranvier. The paper calculates that the electric fields generated by a neuron are of significant magnitude but that the magnetic fields are too small to affect even the signal transmission within a neuron, never mind propagating extraneuronally. However, the dendrites especially can both produce and react to fluctuating electric fields. For the moment, the answer to our third question is partially positive, although we have left unanswered how the measurable magnetic fields are produced. The paper then has a long section describing the structure of microtubules and their component tubulins.

Microtubules are part of a neuron's exoskeleton and are polymer tubes of tubulin, which exists as two polarized isomers. Imagine the microtubules as having three layers with the inner and outer layers negatively charged whereas the middle layer is positively charged. The paper puts forward a method by which tubulins can propagate a wave along the microtubules, combining electromagnetic properties with known biochemical ones. This is more than just a supportive structure and, as at the end it connects to the presynapse in axons it may be able to transmit its information to the next neuron. Experiments on microtubules have also discovered some astonishing properties, such as that they are able to propagate elastic waves at up to the Gigahertz range as well as acoustic waves up to 600 m/s. Also, as the microtubules are charged they may also show piezoelectric effects. These latter discoveries remain to be put into a coherent picture. Why a neuron would have two different modes of signal transmission is a mystery. Perhaps they are different facets of the same signal or perhaps it some kind of checksum to verify that the axonal signal is not a false positive. Pure speculation at this point.

All of this is tantalising but there are serious experimental difficulties in moving forward, not least of which is getting live data as there are laws against sticking probes into living people's brains. We are thereby forced to speculate based on the signals detected at the surface of the brain. Both electric and magnetic fields are measurable as emergent phenomena, but how a single neuron resonates within a nearby bundle is unknown but must surely involve EM propagation. Although the magnetic fields appear to be tiny for an individual neuron they become significant and measurable for resonating bundles. The quoted paper does not look at resonance effects which could be significant even at low field strengths. The subject of stochastic resonance is very recent but, I think, should yield some insights about a non-linear system like the brain and the importance of extracting valid signals from background noise. The 40 Hz electrical signal must have some purpose, whether the cause of consciousness or not, and therefore neurons must have the ability to respond to it. This is an area in which physics and neurology come together to further our understanding. But coming back to the original stimulus of a discussion about AI, I think that modelling the brain as mere physical connections of neurons (be they biochemical or electrical) is doomed to failure unless it also includes emergent extraneuronal phenomena such as electric and magnetic fields. The answer to our last question has to be: probably yes but more work needed!

I used to be lots of things, but all people see now is a red man. The universe has gifted me a rare autoimmune skin condition known as erythroderma.


Harmful Effects of Electromagnetic Radiation (EMF)

For most people, it is impossible to go even a day without coming into contact with electronic devices such as laptops, tablets and cell phones.

People rely on these technological tools for work, communicating with friends and family, school, and personal enjoyment.

What most people don’t seem to realize, however, is that all of these electronic devices are known to emit waves of Electromagnetic Radiation (EMF).

Even people who are aware of this fact often ignore it, but once you know all of the adverse effects this type of radiation can have on your health, you start to pay more attention.

Some people may try to convince you that the negative health effects of Electromagnetic Radiation are simply a hoax thought up by extremely paranoid people. Unfortunately, research is proving that this is not the case at all.

The more research that is done on the matter, the more solid evidence we see that Electromagnetic Radiation emitted from laptop computers, cell phones, and other electronic devices can be harmful to our bodies.

Health Risks of EMFs

The American Academy of Environmental Medicine (AAEM) believes we need to do a better job at understanding the negative health effects from EMF exposure. They have documented significant harmful effects occur from EMF exposure such as genetic damage, reproductive defects, cancer, neurological degeneration and nervous system dysfunction, immune system dysfunction, and many others.

EMF studies repeatedly have shown gene mutations and DNA fragmentation, which can cause cell mutation and cancer.

Kinders are particularly at risk from EMF exposure, because a child’s body absorbs more EMF than an adult’s, according to The Stewart Report. In fact, in reviewing these reports, we find that children absorb up to 60 percent more energy per pound of body weight than adults do. Today’s standard for the maximum signal strength of cell phones is known to penetrate an adult head up to one inch. This same cell phone signal can pass completely through a child’s head!

The effects of prolonged EMF exposure can be cumulative and will span childrens’ lifetimes. This exposure is unprecedented and not experienced by previous generations.

Male and female reproductive systems are also at risk from EMF exposure. In one study, Dr. Conrado Avendano and his colleagues of Nascentis Medicina Reproductiva in Cordoba found that “the use of a laptop computer wirelessly connected to the Internet and positioned near the male reproductive organs may decrease human sperm quality.”

Their study found that after a four-hour exposure, 25 percent of the sperm was no longer active compared to 14 percent from sperm samples stored at the same temperature over the same time period and away from the computer. They also noted that 9 percent of the sperm showed DNA damage, three times the damage found in the comparison samples.

Similarly, the Archives of Environmental & Occupational Health reported laptop EMF emissions create health concerns particularly for women and their fetuses. The study found that Swedish EMF standards were exceeded by 71 to 483 percent by the laptops used in the study which, by the standard’s definition, increases risk for tumor development.

Today’s technologies also produce heat. The heat from a laptop warms the upper legs and can cause Toasted Skin Syndrome, a brownish discoloration of the skin.

Many studies have revealed a link between the use of these types of technological devices and various forms of illness, due to a breakdown at the cellular level.

Dr. Martin Pall’s research on EMF radiation reveals 8 ways EMF radiation impacts our bodies:

  1. Nervous system and brain: widespread neurological/neuropsychiatric effects like sleep disturbance/insomnia fatigue/tiredness headache depression/depressive symptoms lack of concentration/attention/cognitive dysfunction dizziness/vertigo memory changes restlessness/tension/anxiety/stress/agitation irritability.
  2. Endocrine/hormonal systems: The steroid hormone levels drop with EMF exposure, whereas other hormone levels increase with initial exposure. The neuroendocrine hormones and insulin levels often drop with prolonged EMF exposure.
  3. Oxidative stress and free radical damage: central roles in essentially all chronic diseases, as well as other body effects.
  4. Cellular DNA attacks: These are related to cancer causation and produce the most important mutational changes in humans and diverse animals, as well as in future generations.
  5. Apoptosis (programmed cell death): This can cause both neurodegenerative diseases and infertility.
  6. Fertility Problems: This can lead to lower sex hormones, lower libido and increased levels of spontaneous abortion and, as already stated, attack the DNA in sperm cells.
  7. Produce excessive intracellular calcium [Ca2+]i and excessive calcium signaling.
  8. Cancer: 15 different mechanisms of EMF radiation’s effect on the cell can cause cancer. Brain cancer, salivary cancer, acoustic neuromas and two other types of cancer go up with cell phone use. People living near cell phone towers have increased cancer rates.

These effects can create many symptoms in our bodies, some which can be felt, and some which we might not know about. Below are just some of the harmful symptoms of Electromagnetic Radiation exposure.

Het jy geweet?

When an EMF radiation source is at zero distance from the body, it’s most dangerous. As you move farther away, risks are reduced. The following chart shows the benefits of distance with corresponding emission reductions related to a 90 MG ELF EMF source.

Source Measurement
(in milligauss)

Risiko vermindering

Electromagnetic Radiation Health Effects

Short-Term EMF Health Effects

  • Headaches
  • Tingling or burning sensations
  • Aches and pains
  • Decreased sperm motility
  • Hands hurt
  • Trouble sleeping

Long-Term EMF Health Effects

  • Brain tumors
  • Mental illness
  • Cognitive and Behavioral disorders
  • Immune disorders
  • Cancers – blood, breast and more
  • Mutated cells
  • Fragmented DNA
  • Toasted Skin Syndrome

Electrical Sensitivity

  • Headaches
  • Concentration or memory loss
  • Cognitive impairment
  • Tingling or burning sensations
  • Sleeping problems
  • Aches and pains
  • Hand pain

Technology plays a major role in most people’s lives. While you can certainly try to live without your mobile devices, it might be difficult. So what is a person to do?

Avoiding the effects of Electromagnetic Radiation isn’t exactly easy, as mobile devices that emit it are everywhere and practically inescapable. Well, there are a couple of different steps to take to look out for your health.

The good news is you don’t actually have to give up your devices and there are many ways of protecting yourself.

You can also minimize the potential negative health risks by using EMF shields that block Electromagnetic Radiation. Being unaware of the harmful effects of Electromagnetic Radiation won’t make you immune to them. Your best bet is to educate yourself and find ways to protect yourself.


If you were hit by an EMP pulse, would you notice?

Are there any physiological effects of being hit by an EMP pulse, or is the human body completely unaffected? If an EMP weapon were secretly fired with no electronics nearby, would there be any effect?

Iɽ like to add my own question to this. The Human body uses electricity in many functions. How strong would an EMP need to be to damage or disable, say, the brain? Is it possible to fry the brain this way, or am I thinking too much like cliche TV supervilians?

Neurology background here. I'm in the mining sector now, but this is going to be based on unchanged fundamentals. So a big misconception out there is that the brain/nervous system has actual electricity. When most people think about electricity, such as with computer devices, they are thinking about a flow of electrons which carry charge (negative in their case). The body does not work that way however, there aren't a flow of electrons shooting around between synapses like in those cool animations. There is a CHEMICAL gradient of ions creating a difference in charge between the inside/outside of cells. When neurons communicate through through action potentials "spikes" in charge, they are just allowing the ions (K, Na, Ca) to flow in and out depolarizing and re-polarizing the cell. The beauty is thought that this really does emulate a circuit. The cell membrane (which is separating the charge gradient) acts as a capacitor, the diameter of the axon (the neuron tail that the polarization goes down) and the number of ion channels (holes the ions go through) acts as a resistor, and the flow of the ions themselves are the current. So we can use Ohm's law and then a more specific Nernst Equation to calculate neurons' characteristics, such as the specific voltage at resting potential, human's typical neuron is about -70mV for example. NOW, as for EMPs. They disrupt electromagnetic systems such as electricity that works with electron flow. In simplest of ways it pretty much overloads capacitors causing short circuits. Since the body's "electricity" is a charge gradient of IONS, it would have no effect. Now if you are wondering what initial input tells the cells to start this current, it is all the neurotransmitters you all hear about. Anyways, EMPs are radiation after all and strong enough ones can come from forces (such as nuclear explosions) which will be accompanied by gamma rays. So if a pulse is strong enough, it KAN hurt the body, but it would be because of the gamma rays and other stronger radiation. A purely electromagnetic pulse strong enough to hurt someone is pretty unlikely, imagine if the sun somehow exploded and only the electromagnetic rays reached earth. To put things in perspective we can withstand 100KV/m = EMP of an atomic bomb wouldn't even hurt us, but obviously other factors would We would be fried by many other things before the EMP does anything. Hierdie article explains some physics, look at the last section "standardization". Maar fine tuned EMPs such as TMS can have effects.

*Aside from the hard science, let's use our common sense, EMPs are used a lot in war, domestic law enforcement, even by criminals. The machines are shut down, the people are never hurt. Let's use real life experience as some supportive proof!

BELANGRIK. If you have a pace maker, an EMP could short circuit that and kill you, but I have never heard of any reported cases. While an electromagnetic pulse which effects electrons wouldn't hurt us, electricity itself CAN hurt us! I don't mean lightning which would kill us from heat, think more like TASERS! The electricity itself isn't causing the muscle contraction, but the electricity is somewhat mimicking neurotransmitters by pretty much tell all your muscle neurons to fire their ion pulse. So it is good to remember that electricity and electromagnetism are different (though I don't know these details since it goes beyond my field).

TLDR: Electromagnetic Pulses effect electron electricity such as with computer circuits by short circuiting them, the body's "circuit" works with chemical ion gradients creating polar charges, which will be unaffected by EMPs meant to disarm electronics. VERY precise EMPs matching action potentials would work (look up TMS), but that would never occur outside of a medical use setting. However large EMPs (like with nuclear explosions or massive sun flare) are accompanied by stronger waves such as gamma rays which would damage you.

wysig : I know I wrote a lot, but this is much better than trying to read through all these scientific articles people are posting that are crowded with jargon. I know the feels you feel when I myself try to read my engineering friends' papers. lol

EDIT 2: Extra Info For those of you that know about circuits or just interested. Here is a full explanation 4th picture down , this one shows how complex the diagrams can be, and these are more complex readings straight from my university courses. neuronal level ( you can change the "Chp#" starting from 2 and read the whole thing) and muscle tissue level

Edit 3 Someone brought up something known as TMS. I'll refer to this more scholastic article than Wikipedia. As I commented "When I say electromagnetic force won't effect the neurons I am saying in terms of EMP pulse strength. These are isolated very strong pulses which would never occur alone. For the most part, this is also VERY new, and highly debated to be of any effect on its claims of what it treats for." These pulses are also matched in amplitude, strength, direction, and length to mimic the neuronal queue to fire by using action potentials as a reference. The odds of some EMP pulse being strong enough and matching all these criteria precisely is pretty much impossible. Again, when I was saying the electromagnetic force wouldn't effect the neurons, I meant in terms of any realistic EMP strength. Neurons have a specific neurotransmitter (messenger) that tells the cell to open up the ion channels and start the depolarization. If we create a magnetic field at the correct strength to make the cell think it has started the initial ion flow (reach a depolarized state of around -45mV) then it will spontaneously go all the way to +30mV which is the full depolarized level, and then re-polarize to -70mV, this sequence of events is known as the action potential. So yes we CAN activate neurons with a very specific EMP, but this would never happen in any EMP weapon/natural solar flare/ nuclear explosion.

Edit4: I'm no physics or electrical engineer major so pardon my somewhat vague description of how EMPs work, I am certain though that you all need no worry of some weaponized EMP effecting you. Massive solar flare or nuclear explosion, well, you have more than the EMP to worry your curious little heads about! And again, when I say EMPs won't effect people, I mean in all intense and purposes of the types OP is referring to.


Brain-controlling magnets: how do they work?

If you were to tell people that the technology exists to manipulate the workings of people's brains, they may not believe you. That sort of thing is the stuff of cheap sci-fi B movies. If someone in the real world were to try to develop it, that's exactly the sort of scenario where they'd send James Bond in to stop them before it got too far.

But the fact is that this technology genuinely exists and is widely used in neuroscientific research. It is known as Transcranial magnetic stimulation, or TMS, and as the name suggests it stimulates the brain through the cranium using magnetism.

Magnets and the brain work together a lot. Neuroscience is an increasingly media-friendly area of science, and this is due in part to the increasing use of magnetic resonance imaging (MRI), an invaluable but complex technique that uses intense magnetic fields and radio waves to produce eye-catching images of a working body and brain.

TMS takes this brain-magnet relationship a step further. Rather than just passively looking and observing as the brain goes about its business, these advanced electromagnets actually alter the activity of targeted brain regions by inducing a localised varying magnetic field that causes a weak electrical current. This might sound like a bad idea (like licking a battery, but with your temporal lobe rather than your tongue) but it's perfectly logical. The brain does what it does via electrical currents conducted by neurons, and these currents are what keep our numerous organs and anatomical areas working as one cohesive whole, which is important for things like playing sports and staying alive for more than three seconds. TMS simply causes these electrical currents, which the body generates all the time, to occur at higher levels in certain targeted areas of the brain.

The technique relies on placing a coil (of varying design and composition, depending on what you want to do) on the scalp of your conscious subject, above the area you hope to stimulate, and turning it on. The biophysics behind what occurs is fascinating, albeit complex, but that's essentially the procedure, which is deceptively simple seeming.
What's the point of doing this? Well, inducing currents in a part of the brain causes that part to become more or less active (depending on whether you get neuronal depolarisation or hyperpolarisation). Inducing this activity in selected areas gives us a much better understanding of what these areas do, how certain types of activity influence a person's behaviour or perception, or any number of things like that.

It's not a perfect tool, of course. The direct stimulation is currently limited to the more surface-level areas of the brain, given the precision required and limitations of the technique. This still offers ample scope for areas of interest though, and it is still possible to influence deeper areas of the brain, albeit indirectly, via the myriad connections.

Admittedly, when someone manually induces a current in your verbal processing areas or motor cortex, it can seem a little unnerving. And it certainly looks disconcerting. But all the evidence suggests that, used appropriately, it is a safe procedure.

TMS expert, Cardiff University researcher and occasional Guardian contributor Chris Chambers sums it up quite nicely:

The neural activation caused by TMS can tell us a lot about how the human brain controls different behaviours, ranging from basic functions like the ability to see, hear and touch, to our ability to speak and make motor movements. We can even use TMS to explore how the most advanced part of the brain – the prefrontal cortex – regulates high-level abilities like consciousness, impulse control and working memory. The great advantage of TMS over other neuroscience methods is that we're interfering with the brain rather than simply measuring its activity. Because of the causal nature of this intervention, this can tell us which parts of the brain are necessary for particular functions. There is also some evidence that TMS may assist in the treatment of conditions such as depression and tinnitus, and there is growing evidence that it can help the brain reorganise following a stroke.

I can reassure people as to the safety of TMS, in that I've experienced it several times myself by volunteering for studies at the Cardiff University Brain Research Imaging Centre. I only ever had one experience that alarmed me. During one study, I was having my motor cortex activated, which caused my arm to flail involuntarily (it sounds worrying, but it's essentially a hi-tech version of a doctor testing your reflexes in your knee with a mallet). This experience didn't hurt, and as a neuroscience enthusiast I found the experience cool rather than worrying.

However, the physical set-up of the study and the flailing of my arm meant that I repeatedly came perilously close to slapping the (female) experimenter on the posterior. I am not the sort of man who thinks this move is a good idea, and I can't imagine a scenario where I could more effectively argue that it wasn't done on purpose. But still, I'm glad it never happened.

This technique is still relatively new, but is becoming more widespread, and also has clinical applications, such as the treatment of depression. The media has recently acknowledged it, and we could possibly see this happen more often in the near future.

Of course, as with anything of this nature, people will worry about it. I recently explained TMS to an acquaintance. He asked, if it's possible to non-invasively alter the activity in the brain of a conscious person, what's to stop someone building a magnet that has a greater range, allowing them to shut down important brain regions, perhaps critical ones like the medulla oblongata, in unsuspecting people from a distance.

In other words, couldn't TMS be the perfect assassin's weapon? Fatally disrupting the brain activity of individuals from a distance, leaving no residue or evidence behind?

A valid concern? Not really, no. At present, TMS coils are about 15-20cm across and can directly stimulate the brain to a depth of maybe 2-3cm. And because the field strength declines non-linearly with distance, coupled with the Biot-Savart Law, you'd probably need a coil at least the size of a respectable building to get any decent range from one. This would require an incredible amount of power to run, assuming you could build a coil that size that wouldn't break up under the pressure of using it. If you somehow managed all this, the magnetic field generated wouldn't be nearly focused enough (ie you might be able to target it on a crowd of rioters, but not a small area of a human's brain). Even if this lack of focus wasn't an issue, you'd need the "target" to remain completely still while you aim the coil to line up with their important brain regions.

Suffice to say, if someone starts pointing a multi-storey coil attached to a massive generator at you, you should probably keep moving.

But if TMS worries you, the best way to overcome your concerns is to experience it yourself. There may well be a neuroscience/psychology centre looking for volunteers near you. For those near me in or around Cardiff, you can sign up for the TMS studies at the Cardiff University Psychology School.

For more info, contact Jemma Sedgmond at [email protected]

It's cool, I promise (not that my idea of "cool" is universally applicable).

You can follow Dean Burnett on Twitter, @garwboy, to see if he starts behaving oddly after TMS.


Cell phone use may have effect on brain activity, but health consequences unknown

In a preliminary study, researchers found that 50-minute cell phone use was associated with increased brain glucose metabolism (a marker of brain activity) in the region closest to the phone antenna, but the finding is of unknown clinical significance, according to a study in the February 23 issue of JAMA.

"The dramatic worldwide increase in use of cellular telephones has prompted concerns regarding potential harmful effects of exposure to radiofrequency-modulated electromagnetic fields (RF-EMFs). Of particular concern has been the potential carcinogenic effects from the RF-EMF emissions of cell phones. However, epidemiologic studies of the association between cell phone use and prevalence of brain tumors have been inconsistent (some, but not all, studies showed increased risk), and the issue remains unresolved," according to background information in the article. The authors add that studies performed in humans to investigate the effects of RF-EMF exposures from cell phones have yielded variable results, highlighting the need for studies to document whether RF-EMFs from cell phone use affects brain function in humans.

Nora D. Volkow, M.D., of the National Institutes of Health, Bethesda, Md., and colleagues conducted a study to assess if cell phone exposure affected regional activity in the human brain. The randomized study, conducted between January 1 and December 31, 2009, included 47 participants. Cell phones were placed on the left and right ears and brain imaging was performed with positron emission tomography (PET) with (18F)fluorodeoxyglucose injection, used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Analysis was conducted to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. The PET scans were compared to assess the effect of cell phone use on brain glucose metabolism.

The researchers found that whole-brain metabolism did not differ between the on and off conditions. However, there were significant regional effects. Metabolism in the brain region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher (approximately 7 percent) for cell phone on than for cell phone off conditions. "The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism and normalized metabolism," the authors write. "This indicates that the regions expected to have the greater absorption of RF-EMFs from the cell phone exposure were the ones that showed the larger increases in glucose metabolism."

"These results provide evidence that the human brain is sensitive to the effects of RF-EMFs from acute cell phone exposures," the researchers write. They add that the mechanisms by which RF-EMFs could affect brain glucose metabolism are unclear.

"Concern has been raised by the possibility that RF-EMFs emitted by cell phones may induce brain cancer. &hellip Results of this study provide evidence that acute cell phone exposure affects brain metabolic activity. However, these results provide no information as to their relevance regarding potential carcinogenic effects (or lack of such effects) from chronic cell phone use."

"Further studies are needed to assess if these effects could have potential long-term harmful consequences," the authors conclude.

Editorial: Cell Phone Radiofrequency Radiation Exposure and Brain Glucose Metabolism

The results of this study add information about the possible effects of radiofrequency emissions from wireless phones on brain activity, write Henry Lai, Ph.D., of the University of Washington, Seattle, and Lennart Hardell, M.D., Ph.D., of University Hospital, Orebro, Sweden, in an accompanying editorial.

"Although the biological significance, if any, of increased glucose metabolism from acute cell phone exposure is unknown, the results warrant further investigation. An important question is whether glucose metabolism in the brain would be chronically increased from regular use of a wireless phone with higher radiofrequency energy than those used in the current study. Potential acute and chronic health effects need to be clarified. Much has to be done to further investigate and understand these effects."

The editorial authors also question whether the findings of Volkow et al may be a marker of other alterations in brain function from radiofrequency emissions, such as neurotransmitter and neurochemical activities? "If so, this might have effects on other organs, leading to unwanted physiological responses. Further studies on biomarkers of functional brain changes from exposure to radiofrequency radiation are definitely warranted."

Storie Bron:

Materiaal verskaf deur JAMA and Archives Journals. Let wel: Inhoud kan geredigeer word vir styl en lengte.


Kyk die video: DNA Repair Music: 528Hz Healing Music, Nerve Regeneration Music, Cell Regeneration 528Hz (Oktober 2022).