Inligting

3C: Jeopardy - Biologie

3C: Jeopardy - Biologie


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

3C: Gevaar

Enterovirale 3C-protease aktiveer die menslike NLRP1-inflammasoom in lugwegepithelia

Immuunsensorproteïene is van kritieke belang vir die funksie van die menslike aangebore immuunstelsel. Die volledige repertoire van verwante snellers vir menslike immuunsensors word nie ten volle verstaan ​​nie. Hier rapporteer ons dat menslike NACHT-, LRR- en PYD-domeine-bevattende proteïen 1 (NLRP1) geaktiveer word deur 3C-proteases (3Cpros) van enterovirusse, soos menslike rhinovirus (HRV). 3Cpros klief menslike NLRP1 direk op 'n enkele plek tussen Glu 130 en Gly 131 Hierdie splitsing veroorsaak N-glisien-gemedieerde degradasie van die outo-inhiberende NLRP1 N-terminale fragment via die cullin ZER1/ZYG11B kompleks, wat die aktiverende C-terminale fragment vrystel. Infeksie van primêre menslike lugweg-epiteelselle deur lewende menslike HRV veroorsaak NLRP1-afhanklike inflammasoomaktivering en interleukien-18-afskeiding. Ons bevindinge vestig 3Cpros as 'n patogeen-afgeleide sneller vir die menslike NLRP1-inflammasoom en dui daarop dat NLRP1 kan bydra tot inflammatoriese siektes van die lugweg.


28/8: Hier is ons…weer in die Centre du Media….

So…Ek stel 'n lys van aanlyn hulpbronne saam (met jou hulp…dankie) wat nuttig sal wees in ons wolf projek.
Hier is die lys: Intet Resources-Wolf Project

Ek sal meer byvoeg soos ons hulle saam ontdek, so kom kyk weer as jy wil.

Chia Lab-hipoteses Verskaf Vrydag asseblief.

SOSIALE STUDIES:

  1. Bestudeer vir jou fisiese kaartvasvra…jy het 10 minute hiervoor.
  2. Neem die vasvra.
  3. Voltooi jou studiegids
  4. Gaan studiegidsantwoorde na met hierdie sleutel: SIEN POST VIR MAANDAG 9/2
  5. Speel Jeopardy en kyk hoe hoog jy kan score.

27 Augustus 2014
deur jblacher
0 opmerkings


3C: Jeopardy - Biologie

Solank as wat daar mense was, was daar tegnologie. Inderdaad, die tegnieke van die vorming van gereedskap word geneem as die hoofbewys van die begin van menslike kultuur. Oor die algemeen was tegnologie 'n kragtige krag in die ontwikkeling van die beskawing, des te meer namate die band met die wetenskap gesmee is. Tegnologie—soos taal, ritueel, waardes, handel, en die kunste—is'n intrinsieke deel van'n kulturele sisteem en dit beide vorm en weerspieël die stelsel se waardes. In vandag se wêreld is tegnologie 'n komplekse sosiale onderneming wat nie net navorsing, ontwerp en kunsvlyt insluit nie, maar ook finansies, vervaardiging, bestuur, arbeid, bemarking en instandhouding.

In die wydste sin brei tegnologie ons vermoë uit om die wêreld te verander: om materiaal te sny, vorm of saam te stel om dinge van een plek na 'n ander te skuif om verder te reik met ons hande, stemme en sintuie. Ons gebruik tegnologie om die wêreld te probeer verander om beter by ons te pas. Die veranderinge kan verband hou met oorlewingsbehoeftes soos voedsel, skuiling of verdediging, of dit kan verband hou met menslike aspirasies soos kennis, kuns of beheer. Maar die resultate van die verandering van die wêreld is dikwels ingewikkeld en onvoorspelbaar. Hulle kan insluit onverwagte voordele, onverwagte koste, en onverwagte risiko's—enige van wat kan val op verskillende sosiale groepe op verskillende tye. Om die uitwerking van tegnologie te antisipeer is dus net so belangrik as om sy vermoëns te bevorder.

Wetenskap vir alle Amerikaners

In die Verenigde State, anders as in die meeste ontwikkelde lande ter wêreld, is tegnologie as vak grootliks in die skole geïgnoreer. Dit is nie gekoppel aan gradueringsvereistes nie, het geen vaste plek in elementêre onderwys nie, is heeltemal afwesig in die kollege-voorbereidende kurrikulum, en maak nie deel uit van die inhoud in wetenskapkursusse op enige vlak nie.

Dié situasie is egter nou besig om te verander. Daar is 'n groeiende bewustheid dat tegnologie in die alledaagse lewe werk om die karakter van die beskawing te vorm. Ontwerpprojekte word al hoe duideliker in die elementêre grade, en die transformasie van industriële kuns en ander vakke in tegnologie-onderrig kry momentum. En die klem op die Wetenskap-Tegnologie-Vereniging (STS) in die kurrikulum is besig om aanhangers te kry.

Die taak wat voorlê is om tegnologie-onderrig in die kurrikulum in te bou, asook om tegnologie te gebruik om leer te bevorder, sodat alle studente goed ingelig word oor die aard, magte en beperkings van tegnologie. As 'n menslike onderneming het tegnologie sy eie geskiedenis en identiteit, heeltemal afgesien van dié van wetenskap en wiskunde. In die geskiedenis, dit voorafgegaan die wetenskap en net geleidelik het gekom om te trek op die wetenskap—kennis van hoe die natuurlike wêreld werk—om te help in die beheer van wat gebeur in die wêreld. In moderne tye het tegnologie toenemend gekenmerk deur die interafhanklike verhoudings wat dit met wetenskap en wiskunde het. Die maatstawwe wat volg dui aan hoe studente hul begrip van hierdie verhoudings moet ontwikkel.

Hierdie hoofstuk bied aanbevelings aan oor watter kennis oor die aard van tegnologie benodig word vir wetenskaplike geletterdheid en beklemtoon maniere van dink oor tegnologie wat kan bydra om dit verstandig te gebruik. Hoofstuk 8: The Designed World bied beginsels aan wat relevant is vir sommige van die sleuteltegnologieë van vandag se wêreld. Hoofstuk 10: Historiese Perspektiewe, sluit 'n bespreking van die Industriële Revolusie in. Hoofstuk 12: Gewoontes van verstand sluit 'n paar vaardighede in wat relevant is vir deelname aan 'n tegnologiese wêreld.

A. Tegnologie en Wetenskap

Tegnologie is 'n oorwerkte term. Dit het eens beteken om te weet hoe om dinge te doen&mdash die praktiese kunste of die studie van die praktiese kunste. Maar dit beteken ook innovasies soos potlode, televisie, aspirien, mikroskope, ens., wat mense vir spesifieke doeleindes gebruik, en dit verwys na menslike aktiwiteite soos landbou of vervaardiging en selfs na prosesse soos diereteling of stemming of oorlog wat sekere aspekte van die wêreld verander. Verder verwys tegnologie soms na die industriële en militêre instellings wat toegewy is aan die vervaardiging en gebruik van uitvindings en know-how. In enige van hierdie sintuie het tegnologie ekonomiese, sosiale, etiese en estetiese gevolge wat afhang van waar dit gebruik word en van mense se houding teenoor die gebruik daarvan.

Om hierdie kwessies uit te sorteer sal waarskynlik oor baie jare plaasvind namate studente betrokke raak by ontwerp- en tegnologie-aktiwiteite. Eerstens moet hulle verskillende gereedskap gebruik om verskillende dinge in die wetenskap te doen en om praktiese probleme op te los. Deur ontwerp- en tegnologieprojekte kan studente betrokke raak by probleemoplossing wat verband hou met 'n wye reeks werklike kontekste. Deur ontwerpprojekte aan te pak, kan studente tegnologiekwessies teëkom al kan hulle nie tegnologie definieer nie. Hulle moet aandag gee aan die gebruik van gereedskap en instrumente in die wetenskap en die gebruik van praktiese kennis om probleme op te los voordat die onderliggende konsepte verstaan ​​word.

Kleuterskool tot Graad 2

Jong kinders is veteraan tegnologiegebruikers teen die tyd dat hulle skool toe gaan. Hulle ry in motors, gebruik huishoudelike hulpmiddels, bestuur waens en fietse, gebruik tuingereedskap, help met kosmaak, gebruik die televisiestel, ensovoorts. Kinders is ook natuurlike ontdekkingsreisigers en uitvinders, en hulle hou daarvan om dinge te maak. Skool moet studente baie geleenthede gee om die eienskappe van materiale te ondersoek, gereedskap te gebruik en dinge te ontwerp en te bou. Aktiwiteite moet fokus op probleme en behoeftes in en om die skool wat die kinders interesseer en wat haalbaar en veilig aangespreek kan word.

Die taak in hierdie grade is om te begin om die studente se vindingryke energie te kanaliseer en om hul doelgerigte gebruik van gereedskap te verhoog en—in die proses— hul begrip te verbreed van wat 'n instrument ('n houer, papier en potlood, kamera, vergrootglas, ens.) .). Ontwerp- en tegnologieaktiwiteite kan gebruik word om studente op 'n natuurlike en betekenisvolle wyse aan meetinstrumente en -tegnieke bekend te stel. Vyfjariges het byvoorbeeld min probleme om dinge vir hul teddiebere te ontwerp en te maak wat op 'n gepaste skaal gebou is. Metings moet handel oor groottes wat vir kinders van hierdie ouderdom verstaanbaar is, wat byvoorbeeld die omtrek van die aarde of die deursnee van 'n mikrobe uitsluit.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 2 behoort studente dit te weet

    Gereedskap word gebruik om dinge beter of makliker te doen en om sekere dinge te doen wat andersins glad nie gedoen sou kon word nie. In tegnologie word gereedskap gebruik om dinge waar te neem, te meet en te maak. 3A/V1 Wanneer jy probeer om iets te bou of om iets beter te laat werk, help dit gewoonlik om aanwysings te volg as daar enige is of om iemand wat dit voorheen gedoen het vir voorstelle te vra. 3A/P2
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 2 behoort studente dit te weet

    Gereedskap word gebruik om dinge beter of makliker te doen en om dinge te doen wat andersins glad nie gedoen sou kon word nie. In tegnologie word gereedskap gebruik om dinge waar te neem, te meet en te maak. 3A/V1 Wanneer jy probeer om iets te bou of om iets beter te laat werk, help dit gewoonlik om aanwysings te volg as daar enige is of om iemand wat dit voorheen gedoen het vir voorstelle te vra. 3A/P2

Graad 3 tot 5

Hierdie jare moet voortbou op die voriges deur die gesofistikeerdheid van die ontwerpprojekte wat studente aanpak, te verhoog. Hierdie benadering behels dat studente hul repertoire van gereedskap en tegnieke vergroot en hul vaardighede in meting, berekening en kommunikasie verbeter. Aktiwiteite wat 'n beroep doen op die gebruik van instrumente soos mikroskope, teleskope, kameras en klankopnemers om waarnemings en metings te maak, is veral belangrik om die belangrikheid van die afhanklikheid van wetenskap van tegnologie te versterk. Net so belangrik, studente moet vaardigheid en selfvertroue ontwikkel in die gebruik van gewone gereedskap vir persoonlike, alledaagse doeleindes.

Studente moet nou begin skryf oor tegnologie, veral oor hoe tegnologie mense help. Die meeste van die kompleksiteite van die sosiale gevolge van die gebruik van tegnologie kan wag, maar studente moet begin om alternatiewe maniere te oorweeg om iets te doen en die voordele en nadele te vergelyk.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 5 behoort studente dit te weet

    Deur die hele geskiedenis het mense oral gereedskap uitgevind en gebruik. Die meeste gereedskap van vandag verskil van dié van die verlede, maar baie is modifikasies van baie ou gereedskap. 3A/E1 Tegnologie stel wetenskaplikes en ander in staat om dinge waar te neem wat te klein of te ver weg is om andersins gesien te word en om die beweging van voorwerpe te bestudeer wat baie vinnig beweeg of glad nie beweeg nie. 3A/E2 Meetinstrumente kan gebruik word om akkurate inligting in te samel vir die maak van wetenskaplike vergelykings van voorwerpe en gebeure en om dinge te ontwerp en te konstrueer wat behoorlik sal werk. 3A/E3 Tegnologie brei die vermoë van mense uit om die wêreld te verander: om materiaal te sny, vorm of saam te stel om dinge van een plek na 'n ander te skuif en om verder te reik met hul hande, stemme, sintuie en verstand. Die veranderinge kan wees vir oorlewingsbehoeftes soos kos, skuiling en verdediging vir kommunikasie en vervoer of om kennis in te win en idees uit te druk. 3A/E4
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 5 behoort studente dit te weet

    Deur die hele geskiedenis het mense oral gereedskap uitgevind en gebruik. Die meeste gereedskap van vandag verskil van dié van die verlede, maar baie is modifikasies van baie ou gereedskap. 3A/E1 Tegnologie stel wetenskaplikes en ander in staat om dinge waar te neem wat te klein of te ver weg is om daarsonder gesien te word en om die beweging van voorwerpe te bestudeer wat baie vinnig beweeg of glad nie beweeg nie. 3A/E2 Meetinstrumente kan gebruik word om akkurate inligting in te samel vir die maak van wetenskaplike vergelykings van voorwerpe en gebeure en om dinge te ontwerp en te konstrueer wat behoorlik sal werk. 3A/E3 Tegnologie brei die vermoë van mense uit om die wêreld te verander: om materiaal te sny, vorm of saam te stel om dinge van een plek na 'n ander te skuif en om verder te reik met hul hande, stemme, sintuie en verstand. Die veranderinge kan wees vir oorlewingsbehoeftes soos kos, skuiling en verdediging, vir kommunikasie en vervoer, of om kennis op te doen en idees uit te druk. 3A/E4

Graad 6 tot 8

Studente kan nou 'n breër siening van tegnologie ontwikkel en hoe dit beide soos en anders is as wetenskap. Hulle onderskei nie maklik tussen wetenskap en tegnologie nie, aangesien albei probeer om dinge (insluitend eksperimente) te laat gebeur soos mens dit wil hê. Dit is nie nodig om op definisies aan te dring nie, maar studente se aandag kan gevestig word wanneer hulle duidelik iets probeer uitvind, duidelik probeer om iets te laat gebeur, of van elk doen.

Verder, soos studente begin dink oor hul eie moontlike beroepe, moet hulle bekendgestel word aan die reeks loopbane wat tegnologie en wetenskap behels, insluitend ingenieurswese, argitektuur en industriële ontwerp. Deur projekte, voorlesings, uitstappies en onderhoude kan studente begin om 'n gevoel te ontwikkel van die groot verskeidenheid beroepe wat met tegnologie en wetenskap verband hou, en watter voorbereiding hulle benodig.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 8 behoort studente dit te weet

    In vroeër tye is die opgehoopte inligting en tegnieke van elke generasie werkers direk op die werk aan die volgende generasie werkers geleer. Vandag kan die kennisbasis vir tegnologie ook gevind word in biblioteke van gedrukte en elektroniese hulpbronne en word dit dikwels in die klaskamer onderrig. 3A/M1 Tegnologie is noodsaaklik vir die wetenskap vir doeleindes soos toegang tot die buitenste ruimte en ander afgeleë liggings, monsterversameling en behandeling, meting, data-insameling en berging, berekening en kommunikasie van inligting. 3A/M2 Ingenieurs, argitekte en ander wat betrokke is by ontwerp en tegnologie gebruik wetenskaplike kennis om praktiese probleme op te los. Hulle moet ook gewoonlik menslike waardes en beperkings in ag neem. 3A/M3*
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 8 behoort studente dit te weet

    In vroeër tye is die opgehoopte inligting en tegnieke van elke generasie werkers direk op die werk aan die volgende generasie werkers geleer. Vandag kan die kennisbasis vir tegnologie ook gevind word in biblioteke van gedrukte en elektroniese hulpbronne en word dit dikwels in die klaskamer onderrig. 3A/M1 Tegnologie is noodsaaklik vir die wetenskap vir doeleindes soos toegang tot die buitenste ruimte en ander afgeleë liggings, monsterversameling en behandeling, meting, data-insameling en berging, berekening en kommunikasie van inligting. 3A/M2 Ingenieurs, argitekte en ander wat betrokke is by ontwerp en tegnologie gebruik wetenskaplike kennis om praktiese probleme op te los. Maar hulle moet gewoonlik ook menslike waardes en beperkings in ag neem. 3A/M3

Graad 9 tot 12

Benewens deelname aan groot ontwerpprojekte om hul begrip van tegnologie te verdiep, moet studente nou gehelp word om 'n ryker sin te ontwikkel vir die verhoudings wat tegnologie en wetenskap verbind. Dit kan kom uit besinning oor die projekervarings en uit 'n studie van die geskiedenis van wetenskap en tegnologie. Sekere episodes in die geskiedenis van die wetenskap illustreer die belangrikheid van tegnologie vir die wetenskap en die moeilikheid om wetenskap en tegnologie duidelik te skei. Die Industriële Revolusie is veral belangrik in hierdie verband.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die 12de graad behoort studente dit te weet

    Tegnologiese probleme en vooruitgang skep dikwels 'n vraag na nuwe wetenskaplike kennis, en nuwe tegnologieë maak dit vir wetenskaplikes moontlik om hul navorsing op nuwe maniere uit te brei of om heeltemal nuwe navorsingslyne te onderneem. Die beskikbaarheid van nuwe tegnologie self veroorsaak dikwels wetenskaplike vooruitgang. 3A/H1* Wiskunde, kreatiwiteit, logika en oorspronklikheid is alles nodig om tegnologie te verbeter. 3A/H2 Tegnologie raak gewoonlik die samelewing meer direk as wetenskap omdat tegnologie praktiese probleme oplos en menslike behoeftes dien (en ook nuwe probleme en behoeftes skep). 3A/H3a* Een manier waarop wetenskap die samelewing beïnvloed, is deur mense se nuuskierigheid te stimuleer en te bevredig en hul sienings van hoe die wêreld is te vergroot of uit te daag. 3A/H3b* Ingenieurs gebruik kennis van wetenskap en tegnologie, tesame met ontwerpstrategieë, om praktiese probleme op te los. Wetenskaplike kennis bied 'n manier om te skat wat die gedrag van dinge sal wees selfs voordat dit gemaak word. Boonop stel die wetenskap dikwels nuwe soorte gedrag voor wat nie eers voorheen voorgestel is nie, en lei dus tot nuwe tegnologieë. 3A/H4** (SFAA)
1993 Weergawe van die Benchmarks Statements

Teen die einde van die 12de graad behoort studente dit te weet

    Tegnologiese probleme skep dikwels 'n vraag na nuwe wetenskaplike kennis, en nuwe tegnologieë maak dit vir wetenskaplikes moontlik om hul navorsing op nuwe maniere uit te brei of om heeltemal nuwe navorsingslyne te onderneem. Die beskikbaarheid van nuwe tegnologie self veroorsaak dikwels wetenskaplike vooruitgang. 3A/H1 Wiskunde, kreatiwiteit, logika en oorspronklikheid is alles nodig om tegnologie te verbeter. 3A/H2 Tegnologie raak gewoonlik die samelewing meer direk as wetenskap omdat dit praktiese probleme oplos en menslike behoeftes dien (en nuwe probleme en behoeftes kan skep). Daarteenoor beïnvloed wetenskap die samelewing hoofsaaklik deur mense se nuuskierigheid te stimuleer en te bevredig en soms deur hul sienings van hoe die wêreld is te vergroot of uit te daag. 3A/H3

B. Ontwerp en stelsels

Ingenieurswese is die professionele veld wat die naaste, of ten minste die mees doelbewuste, met tegnologie geassosieer word. Ingenieurs los probleme op deur wetenskaplike beginsels vir praktiese doeleindes toe te pas. Hulle ontwerp instrumente, masjiene, strukture en stelsels om spesifieke doelwitte te bereik, en moet dit doen terwyl beperkings in ag geneem word wat deur tyd, geld, wet, moraliteit, onvoldoende inligting en meer opgelê word. Kortom, ingenieurswese het grootliks te doen met die ontwerp van tegnologiese stelsels.

Miskien is die beste manier om vertroud te raak met die aard van ingenieurswese en ontwerp om iets te doen. Deur aan sulke aktiwiteite deel te neem, behoort studente te leer hoe om situasies te ontleed en relevante inligting in te samel, probleme te definieer, kreatiewe idees te genereer en te evalueer, hul idees in tasbare oplossings te ontwikkel en hul oplossings te assesseer en te verbeter. Om goeie probleemoplossers te word, moet studente teken- en modelleringsvaardighede ontwikkel, tesame met die vermoë om hul ontledings, voorstelle en resultate in duidelike taal op te teken.

Geleidelik, namate studente aan meer gesofistikeerde projekte deelneem, sal hulle beperkings teëkom en die behoefte om afwegings te maak. Die konsep van handel af in tegnologie&mdash en breër in alle sosiale stelsels&mdash is so belangrik dat onderwysers dit in soveel probleemoplossingskontekste as moontlik moet plaas. Studente moet eksplisiet wees in hul eie voorstelle oor wat vir wat verruil word. Hulle moet leer om dieselfde te verwag van ander wat tegniese, ekonomiese of politieke oplossings vir probleme voorstel.

Terugvoer behoort nog 'n hoofkonsep te wees wat geleer word in die studie van tegnologiese stelsels. Studente sal dit waarskynlik dikwels teëkom in biologie, fisiologie, politiek, speletjies, gesprekke, en selfs wanneer hulle gereedskap en masjiene gebruik. Studente moet dit ook leer tegnologie het altyd newe-effekte en dit alle tegnologiese stelsels kan misluk. Hierdie idees kan vroeg in eenvoudige vorm bekendgestel word en word geleidelik meer prominent in die hoër grade. Net soos met handel af en terugvoer, moet hierdie nuwe konsepte in 'n verskeidenheid kontekste teëgekom word. Dagblaaie verskaf 'n onuitputlike voorraad voorbeelde om te ontleed.

Kleuterskool tot Graad 2

Kinders moet dinge ontwerp en maak met eenvoudige gereedskap en 'n verskeidenheid materiale. Hulle moet 'n behoefte of geleentheid identifiseer wat vir hulle van belang is, en dan die ontwerp met toepaslike hulp beplan, ontwerp, maak, evalueer en wysig. Hulle het dalk hulp nodig om probleme te identifiseer wat vir hulle interessant is en binne hul vermoëns. Nadat hulle ondervinding opgedoen het om een ​​probleem deur te werk, kan hulle hul volgende ontwerpprojek makliker vind en meer selfversekerd voel om dit te probeer.

Een ontwerpoorweging wat dadelik ingestel moet word, is beperkings. Veiligheid, tyd, koste, skoolbeleid, ruimte, beskikbaarheid van materiaal en ander realiteite beperk studenteprojekte. Onderwysers kan daarop wys dat volwassenes ook beperkings in die gesig staar wanneer hulle dinge ontwerp, en dat die werklike uitdaging, vir volwassenes of kinders, is om oplossings te bedink wat goeie resultate lewer ten spyte van die beperkings. In die vroeë grade kan kinders geneig wees om met hul eerste ontwerpbegrip te gaan met min geduld vir toetsing of hersiening. Waar moontlik moet hulle aangemoedig word om hul idees te verbeter, maar dit is belangriker dat hulle vertroue ontwikkel in hul vermoë om ontwerpprojekte uit te dink en uit te voer. Wanneer hul projekte voltooi is, kan studente vertel waarvan hulle hou van mekaar se ontwerpe.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 2 behoort studente dit te weet

1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 2 behoort studente dit te weet

Graad 3 tot 5

Studente moet toenemend gemaklik raak met die ontwikkeling van ontwerpe en die ontleding van die produk: "Werk dit?" "Kan ek dit beter laat werk?" "Kon ek beter materiaal gebruik het?" Hoe meer ervaring studente opdoen, hoe minder direkte leiding benodig hulle. Hulle moet vroeg besef dat samewerkingspogings en individuele inisiatief waardevol is om ontwerpfoute op te spoor en uit te stryk. Hulle moet uitdagings begin geniet wat vereis dat hulle 'n probleem opklaar, kriteria vir 'n aanvaarbare oplossing genereer, moontlike oplossings voorstel, een uitprobeer en dan aanpassings maak of oor begin met 'n nuut voorgestelde oplossing.

Aangesien studente meer uitgebreide ontwerpprojekte aanpak, moet klem geplaas word op die idee dat daar gewoonlik nie een beste ontwerp vir 'n produk of proses is nie, maar 'n verskeidenheid alternatiewe en moontlikhede. Een manier om hierdie doel te bereik is om verskeie groepe te laat ontwerp en oplossings vir dieselfde probleem uit te voer en dan die voor- en nadele van elke oplossing te bespreek. Ideaal gesproke moet die probleme "werklik" en boeiend vir die studente wees.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 5 behoort studente dit te weet

    Daar is geen perfekte ontwerp nie. Ontwerpe wat in een opsig die beste is (veiligheid of gemak van gebruik, byvoorbeeld) kan op ander maniere (koste of voorkoms) minderwaardig wees. Gewoonlik moet sommige kenmerke opgeoffer word om ander te kry. 3B/E1* Selfs 'n goeie ontwerp kan misluk. Soms kan stappe voor die tyd geneem word om die waarskynlikheid van mislukking te verminder, maar dit kan nie heeltemal uitgeskakel word nie. 3B/E2 Die oplossing vir een probleem kan ander probleme skep. 3B/E3
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 5 behoort studente dit te weet

    Daar is geen perfekte ontwerp nie. Ontwerpe wat in een opsig die beste is (veiligheid of gemak van gebruik, byvoorbeeld) kan op ander maniere (koste of voorkoms) minderwaardig wees. Gewoonlik moet sommige kenmerke opgeoffer word om ander te kry. Hoe sulke afwegings ontvang word, hang af van watter kenmerke beklemtoon word en watter afgespeel word. 3B/E1 Selfs 'n goeie ontwerp kan misluk. Soms kan stappe voor die tyd geneem word om die waarskynlikheid van mislukking te verminder, maar dit kan nie heeltemal uitgeskakel word nie. 3B/E2 Die oplossing vir een probleem kan ander probleme skep. 3B/E3

Graad 6 tot 8

'n Idee wat in die middelgrade ontwikkel moet word, is dat komplekse stelsels beheermeganismes vereis. Die algemene termostaat vir die beheer van kamertemperatuur is aan die meeste studente bekend en kan as model vir alle beheermeganismes dien. Maar studente moet verken hoe kontroles werk in verskeie soorte stelsels—masjiene, atletiese kompetisies, politiek, die menslike liggaam, leer, ens. Op 'n sekere punt moet studente probeer om beheermeganismes uit te vind, wat nie meganies of elektries hoef te wees nie, dat hulle werklik in werking kan stel.

Die konsep van newe-effekte kan op hierdie tydstip geopper word, miskien deur werklike gevallestudies van tegnologieë (antibiotika, motors, spuitkanne, ens.) te gebruik wat onverwagte newe-effekte geblyk het te hê. Studente behoort ook aan meer interessante en uitdagende beperkings te voldoen terwyl hulle aan ontwerpprojekte werk. Studente moet ook vertroud raak met baie werklike voorbeelde van hoe oorontwerp en oortolligheid gebruik word om onsekerheid te hanteer.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 8 behoort studente dit te weet

    Ontwerp vereis gewoonlik dat nie net fisiese en biologiese beperkings in ag geneem word nie, maar ook ekonomiese, politieke, sosiale, etiese en estetiese beperkings. 3B/M1* Alle tegnologieë het ander effekte as dié wat deur die ontwerp bedoel is, waarvan sommige moontlik voorspelbaar was en ander nie. 3B/M2a Newe-effekte van tegnologieë kan vir sommige van die bevolking onaanvaarbaar blyk te wees en dus lei tot konflik tussen groepe. 3B/M2b Byna alle beheerstelsels het insette, uitsette en terugvoer. 3B/M3a Die essensie van beheer is om inligting oor wat gebeur te vergelyk met wat mense wil hê moet gebeur en dan toepaslike aanpassings te maak. Hierdie prosedure vereis om inligting te bespeur, dit te verwerk en veranderinge aan te bring. 3B/M3bc In byna alle moderne masjiene dien mikroverwerkers as sentrums van prestasiebeheer. 3B/M3d-stelsels misluk omdat hulle foutiewe of swak ooreenstemmende dele het, gebruik word op maniere wat oorskry wat deur die ontwerp bedoel is, of swak ontwerp is om mee te begin. 3B/M4a Die mees algemene maniere om mislukking te voorkom, is vooraftoetsing van onderdele en prosedures, oorontwerp en oortolligheid. 3B/M4b
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 8 behoort studente dit te weet

    Ontwerp vereis gewoonlik dat beperkings in ag geneem word. Sommige beperkings, soos swaartekrag of die eienskappe van die materiaal wat gebruik moet word, is onvermydelik. Ander beperkings, insluitend ekonomiese, politieke, sosiale, etiese en estetiese beperkings, beperk keuses. 3B/M1 Alle tegnologieë het ander effekte as dié wat deur die ontwerp bedoel is, waarvan sommige moontlik voorspelbaar was en ander nie. In beide gevalle kan hierdie newe-effekte vir sommige van die bevolking onaanvaarbaar blyk te wees en dus lei tot konflik tussen groepe. 3B/M2 Byna alle beheerstelsels het insette, uitsette en terugvoer. Die essensie van beheer is om inligting oor wat gebeur te vergelyk met wat mense wil hê moet gebeur en dan toepaslike aanpassings te maak. Hierdie prosedure vereis om inligting te bespeur, dit te verwerk en veranderinge aan te bring. In byna alle moderne masjiene dien mikroverwerkers as sentrums van prestasiebeheer. 3B/M3-stelsels misluk omdat hulle foutiewe of swak ooreenstemmende onderdele het, gebruik word op maniere wat oorskry wat deur die ontwerp bedoel is, of swak ontwerp is om mee te begin. Die mees algemene maniere om mislukking te voorkom, is vooraftoetsing van onderdele en prosedures, oorontwerp en oortolligheid. 3B/M4

Graad 9 tot 12

Genoeg tyd moet bestee word om die konsepte van hulpbronne (gereedskap, materiaal, energie, inligting, mense, kapitaal, tyd), stelsels, beheer en impakte wat in vroeër grade ingestel is, uit te voer. Studente moet ook na hoër vlakke van kritiese en kreatiewe denke beweeg deur progressief meer veeleisende ontwerp- en tegnologiewerk. Hulle benodig oefening as individue en as lede van 'n groep om idees te ontwikkel en te definieer deur gebruik te maak van tekeninge en modelle.

Nuwe konsepte wat in hoërskool bekendgestel sal word, sluit in risiko-analise en tegnologie-assessering. Studente moet bewus word dat ontwerpte stelsels onderhewig is aan mislukking, maar dat die risiko van mislukking op 'n verskeidenheid maniere verminder kan word: oorontwerp, oortolligheid, faalveilige ontwerpe, meer navorsing voor die tyd, meer kontroles, ens. om te erken dat hierdie voorsorgmaatreëls koste byvoeg wat onbetaalbaar kan word, sodat min ontwerpe ideaal is.

Omdat geen aantal voorsorgmaatreëls die risiko van stelselmislukking tot nul kan verminder nie, is dit dikwels nodig om die beraamde risiko's van 'n voorgestelde tegnologie met sy alternatiewe te vergelyk. Die keuse is gewoonlik nie tussen 'n hoërisiko-opsie en 'n risikovrye een nie, maar kom daarop neer om 'n afweging te maak tussen aksies, wat almal 'n mate van risiko inhou.

Studente moet besef dat die ontleding van risiko behels dat daar gekyk word na waarskynlikhede van gebeurtenisse en na hoe erg die gebeure sou wees as dit sou gebeur. Deur opnames en onderhoude kan studente leer dat dit moeilik is om risiko's te vergelyk omdat mense baie verskil in hul persepsie van risiko, wat geneig is om beïnvloed te word deur sake soos of die risiko geleidelik of oombliklik is (aardverwarming teenoor vliegtuigongelukke), hoeveel beheer mense dink hulle het oor die risiko (sigaretrook teenoor om deur weerlig getref te word), en hoe die risiko uitgedruk word (die aantal mense wat geraak word teenoor die verhouding wat geraak word).

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die 12de graad behoort studente dit te weet

    By die ontwerp van 'n toestel of proses moet daar gedink word aan hoe dit vervaardig, bedryf, onderhou, vervang en weggedoen sal word en wie dit sal verkoop, bedryf en versorg. Die koste verbonde aan hierdie funksies kan nog meer beperkings op die ontwerp stel. 3B/H1 Die waarde van enige gegewe tegnologie kan verskil vir verskillende groepe mense en op verskillende tydstip. 3B/H2 Komplekse stelsels het lae kontroles. Sommige kontroles bedryf bepaalde dele van die stelsel en sommige beheer ander kontroles. Selfs ten volle outomatiese stelsels vereis op 'n stadium menslike beheer. 3B/H3 Risiko-analise word gebruik om die waarskynlikheid van ongewenste newe-effekte van 'n nuwe tegnologie te verminder. Die publieke persepsie van risiko kan egter afhang van sielkundige faktore sowel as wetenskaplike faktore. 3B/H4 Hoe meer onderdele en verbindings 'n stelsel het, hoe meer maniere kan dit verkeerd loop. Komplekse stelsels het gewoonlik komponente om klein foute op te spoor, te rugsteun, te omseil of te vergoed. 3B/H5 Om die kans op stelselmislukking te verminder, word prestasietoetsing dikwels uitgevoer met behulp van kleinskaalse modelle, rekenaarsimulasies, analoge stelsels, of net die dele van die stelsel wat as die minste betroubaar beskou word. 3B/H6
1993 Weergawe van die Benchmarks Statements

Teen die einde van die 12de graad behoort studente dit te weet

    By die ontwerp van 'n toestel of proses moet daar gedink word aan hoe dit vervaardig, bedryf, onderhou, vervang en weggedoen sal word en wie dit sal verkoop, bedryf en versorg. Die koste verbonde aan hierdie funksies kan nog meer beperkings op die ontwerp stel. 3B/H1 Die waarde van enige gegewe tegnologie kan verskil vir verskillende groepe mense en op verskillende tydstip. 3B/H2 Komplekse stelsels het lae kontroles. Sommige kontroles bedryf bepaalde dele van die stelsel en sommige beheer ander kontroles. Selfs ten volle outomatiese stelsels vereis op 'n stadium menslike beheer. 3B/H3 Risiko-analise word gebruik om die waarskynlikheid van ongewenste newe-effekte van 'n nuwe tegnologie te verminder. Die publieke persepsie van risiko kan egter afhang van sielkundige faktore sowel as wetenskaplike faktore. 3B/H4 Hoe meer onderdele en verbindings 'n stelsel het, hoe meer maniere kan dit verkeerd loop. Komplekse stelsels het gewoonlik komponente om klein foute op te spoor, te rugsteun, te omseil of te vergoed. 3B/H5 Om die kans op stelselmislukking te verminder, word prestasietoetsing dikwels uitgevoer met behulp van kleinskaalse modelle, rekenaarsimulasies, analoge stelsels, of net die dele van die stelsel wat as die minste betroubaar beskou word. 3B/H6

C. Kwessies in Tegnologie

Meer en meer word burgers gevra om te besluit watter tegnologieë om te ontwikkel, watter om te gebruik en hoe om dit te gebruik. Deel van die voorbereiding vir daardie verantwoordelikheid is om te weet hoe tegnologie werk, insluitend die alternatiewe, voordele, risiko's en beperkings daarvan. Die langtermynbelange van die samelewing word die beste gedien wanneer sleutelkwessies rakende voorstelle om tegnologie in te stel of te beperk aangespreek word voordat finale besluite geneem word. Studente moet leer hoe om belangrike vrae te vra oor die onmiddellike en langtermyn-impakte wat tegnologiese innovasies en die uitskakeling van bestaande tegnologieë waarskynlik sal hê. Maar intelligente volwassenes stem nie saam oor die wyse gebruik van tegnologie nie. Skoolonderrig moet studente help om te leer hoe om krities oor tegnologiekwessies te dink, nie wat om daaroor te dink nie. Onderwysers kan studente help om ingeligte houdings oor die verskillende tegnologieë en hul sosiale, kulturele, ekonomiese en ekologiese gevolge te verkry. Wanneer onderwysers wel hul persoonlike sienings uitspreek (om te demonstreer dat volwassenes goed ingeligte menings kan hê), moet hulle ook alternatiewe sienings erken en die bewyse, logika en waardes regverdig stel wat ander mense daartoe lei om daardie sienings te hê.

Om die potensiële impak van tegnologie te verstaan, kan van kritieke belang vir die beskawing wees. Tegnologie is nie aangebore goed, sleg of neutraal nie. Tipies is die uitwerking daarvan kompleks, moeilik om akkuraat te skat, en het waarskynlik verskillende waardes vir verskillende mense op verskillende tye. Die uitwerking daarvan hang af van menslike besluite oor ontwikkeling en gebruik. Human experience with technology, including the invention of processes and tools, shows that people have some control over their destiny. They can tackle problems by searching for better ways to do things, inventing solutions and taking risks.

Case studies of actual technologies provide an excellent way for students to discuss risk. There is a vast array of topics: the Aswan High Dam, the contraceptive pill, steam engines, pesticides, public-opinion polling, penicillin, standardized parts, refrigeration, nuclear power, fluoridated water, and hundreds more. Teachers and students can assemble case-study material or use commercially developed case studies. Good design projects and case studies can help students to develop insight into experience.

Kleuterskool tot Graad 2

Design projects give students interesting opportunities to solve problems, use tools well, measure things carefully, make reasonable estimations, calculate accurately, and communicate clearly. And projects also let students ponder the effects their inventions might have. For example, if a group of the children in a class decides to build a large shallow tank to create an ocean habitat, the whole class should discuss what happens if the tank leaks, whether this project interferes with other projects or classroom activities, whether there are other ways to learn about ocean habitats, and so forth. More generally, young children can begin to learn about the effects that people have on their surroundings.

Students at this level are old enough to see that solving some problems may lead to other problems, but the social impact matters should not be pressed too hard now. That might overemphasize constraints and take much of the fun out of doing simple projects by requiring too much analysis.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 2 behoort studente dit te weet

    People, alone or in groups, are always inventing new ways to solve problems and get work done. The tools and ways of doing things that people have invented affect all aspects of life. 3C/P1 When a group of people wants to build something or try something new, they should try to figure out ahead of time how it might affect other people. 3C/P2
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 2 behoort studente dit te weet

    People, alone or in groups, are always inventing new ways to solve problems and get work done. The tools and ways of doing things that people have invented affect all aspects of life. 3C/P1 When a group of people wants to build something or try something new, they should try to figure out ahead of time how it might affect other people. 3C/P2

Graad 3 tot 5

Students can become interested in comparing present technology with that of earlier times, as well as the technology in their everyday lives with that of other places in the world. They can imagine what life would be like without certain technology, as well as what new technology the future might hold. Reading about other civilizations or earlier times than their own will illustrate the central role that different technologies play. Students may get involved in current campaigns related to technology&mdashsaving energy, recycling materials, reducing litter, and the like. Waste disposal may be a particularly comprehensible and helpful topic in directing their attention to the side effects of technology.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 5 behoort studente dit te weet

    Technology has been part of life on the earth since the advent of the human species. 3C/E1a Like language, ritual, commerce, and the arts, technology is an intrinsic part of human culture, and it both shapes society and is shaped by it. 3C/E1b The technology available to people greatly influences what their lives are like. 3C/E1c Any invention is likely to lead to other inventions. Once an invention exists, people are likely to think up ways of using it that were never imagined at first. 3C/E2 Transportation, communications, nutrition, sanitation, health care, entertainment, and other technologies give large numbers of people today the goods and services that once were luxuries enjoyed only by the wealthy. These benefits are not equally available to everyone. 3C/E3 Factors such as cost, safety, appearance, environmental impact, and what will happen if the solution fails must be considered in technological design. 3C/E4* Technologies often have drawbacks as well as benefits. A technology that helps some people or organisms may hurt others—either deliberately (as weapons can) or inadvertently (as pesticides can). 3C/E5* Because of their ability to invent tools and processes, people have an enormous effect on the lives of other living things. 3C/E6
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 5 behoort studente dit te weet

    Technology has been part of life on the earth since the advent of the human species. Like language, ritual, commerce, and the arts, technology is an intrinsic part of human culture, and it both shapes society and is shaped by it. The technology available to people greatly influences what their lives are like. 3C/E1 Any invention is likely to lead to other inventions. Once an invention exists, people are likely to think up ways of using it that were never imagined at first. 3C/E2 Transportation, communications, nutrition, sanitation, health care, entertainment, and other technologies give large numbers of people today the goods and services that once were luxuries enjoyed only by the wealthy. These benefits are not equally available to everyone. 3C/E3 Scientific laws, engineering principles, properties of materials, and construction techniques must be taken into account in designing engineering solutions to problems. Other factors, such as cost, safety, appearance, environmental impact, and what will happen if the solution fails also must be considered. 3C/E4
    In the current version of Benchmarks Online, the first sentence of this benchmark has been moved to grades 6-8 and recoded as 3C/M8** Technologies often have drawbacks as well as benefits. A technology that helps some people or organisms may hurt others either deliberately (as weapons can) or inadvertently (as pesticides can). When harm occurs or seems likely, choices have to be made or new solutions found. 3C/E5 Because of their ability to invent tools and processes, people have an enormous effect on the lives of other living things. 3C/E6

Graad 6 tot 8

To enrich their understanding of how technology has shaped how people live now, students should examine what life was like under different technological circumstances in the past. They should become aware that significant changes occurred in the lives of people when technology provided more and better food, control of sewage, heat and light for homes, and rapid transportation. Studying the past should engender respect for the inventions and constructions of earlier civilizations and cultures.

Both historical and literary approaches ought to be used to imagine what the future will bring and to reflect on people's somewhat limited ability to predict the future. Science fiction and novels set in future times suggest changes in human life that might occur because of yet uninvented technology. Stories selected for this purpose should raise many different issues regarding the impact of technology, and students should probe beneath the plot to analyze those issues. Student groups can formulate and compare their own scenarios for some future time—say, when they are adults.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die graad 8 behoort studente dit te weet

    Technology cannot always provide successful solutions to problems or fulfill all human needs. 3C/M2* Throughout history, people have carried out impressive technological feats, some of which would be hard to duplicate today even with modern tools. The purposes served by these achievements have sometimes been practical, sometimes ceremonial. 3C/M3 Technology is largely responsible for the great revolutions in agriculture, manufacturing, sanitation and medicine, warfare, transportation, information processing, and communications that have radically changed how people live and work. 3C/M4* New technologies increase some risks and decrease others. Some of the same technologies that have improved the length and quality of life for many people have also brought new risks. 3C/M5 Rarely are technology issues simple and one-sided. Relevant facts alone, even when known and available, usually do not settle matters. That is because contending groups may have different values and priorities. They may stand to gain or lose in different degrees, or may make very different predictions about what the future consequences of the proposed action will be. 3C/M6* Societies influence what aspects of technology are developed and how these are used. People control technology (as well as science) and are responsible for its effects. 3C/M7 Scientific laws, engineering principles, properties of materials, and construction techniques must be taken into account in designing engineering solutions to problems. 3C/M8** (BSL) In all technologies, there are always trade-offs to be made. 3C/M9** (BSL)
1993 Weergawe van die Benchmarks Statements

Teen die einde van die graad 8 behoort studente dit te weet

    The human ability to shape the future comes from a capacity for generating knowledge and developing new technologies—and for communicating ideas to others. 3C/M1 Technology cannot always provide successful solutions for problems or fulfill every human need. 3C/M2 Throughout history, people have carried out impressive technological feats, some of which would be hard to duplicate today even with modern tools. The purposes served by these achievements have sometimes been practical, sometimes ceremonial. 3C/M3 Technology has strongly influenced the course of history and continues to do so. It is largely responsible for the great revolutions in agriculture, manufacturing, sanitation and medicine, warfare, transportation, information processing, and communications that have radically changed how people live. 3C/M4 New technologies increase some risks and decrease others. Some of the same technologies that have improved the length and quality of life for many people have also brought new risks. 3C/M5 Rarely are technology issues simple and one-sided. Relevant facts alone, even when known and available, usually do not settle matters entirely in favor of one side or another. That is because the contending groups may have different values and priorities. They may stand to gain or lose in different degrees, or may make very different predictions about what the future consequences of the proposed action will be. 3C/M6 Societies influence what aspects of technology are developed and how these are used. People control technology (as well as science) and are responsible for its effects. 3C/M7

Graad 9 tot 12

As suggested earlier, the real-world work of students as supplemented by case studies probably provides the most effective way to examine issues related to how society responds to the promise or threat of technological change—whether by adopting new technologies or curtailing the use of existing ones. What must be avoided by teachers is turning the case studies into occasions for promoting a particular point of view. People tend to hold very strong opinions on the use of technologies, and not only of nuclear reactors and genetic engineering. The teacher's job is not to provide students with the "right" answers about technology but to see to it that students know what questions to ask.

Students can also add detail to their awareness of the effects of the human presence on life. For instance, they should be able to cite several examples of how the introduction of foreign species has changed an ecosystem. Out of this should come an awareness that people can make some decisions about what life on earth will survive and a sense of responsibility about exercising power. Students also should learn that people cannot shape every aspect of life to their own liking.

For example, most Americans recognize that technology has provided new goods and services, but not that industrialization of agriculture, by eliminating the need for children to work in the fields, made it possible for them to attend school, thereby increasing the general educational level of the population. These kinds of social impacts should be studied as well as those that affect human health and the environment.

Huidige weergawe van die maatstawwe-verklarings

Teen die einde van die 12de graad behoort studente dit te weet

    Social and economic forces strongly influence which technologies will be developed and used. Which will prevail is affected by many factors, such as personal values, consumer acceptance, patent laws, the availability of risk capital, the federal budget, local and national regulations, media attention, economic competition, and tax incentives. 3C/H1 Some scientists and engineers are comfortable working in situations in which some secrecy is required, but others prefer not to do so. It is generally regarded as a matter of individual choice and ethics, not one of professional ethics. 3C/H2* In deciding on proposals to introduce new technologies or curtail existing ones, some key questions arise concerning possible alternatives, who benefits and who suffers, financial and social costs, possible risks, resources used (human, material, or energy), and waste disposal. 3C/H3* The human species has a major impact on other species in many ways: reducing the amount of the earth's surface available to those other species, interfering with their food sources, changing the temperature and chemical composition of their habitats, introducing foreign species into their ecosystems, and altering organisms directly through selective breeding and genetic engineering. 3C/H4 Human inventiveness has brought new risks as well as improvements to human existence. 3C/H5 The human ability to influence the course of history comes from its capacity for generating knowledge and developing new technologies—and for communicating ideas to others. 3C/H6** (BSL)
1993 Weergawe van die Benchmarks Statements

Teen die einde van die 12de graad behoort studente dit te weet

    Social and economic forces strongly influence which technologies will be developed and used. Which will prevail is affected by many factors, such as personal values, consumer acceptance, patent laws, the availability of risk capital, the federal budget, local and national regulations, media attention, economic competition, and tax incentives. 3C/H1 Technological knowledge is not always as freely shared as scientific knowledge unrelated to technology. Some scientists and engineers are comfortable working in situations in which some secrecy is required, but others prefer not to do so. It is generally regarded as a matter of individual choice and ethics, not one of professional ethics. 3C/H2 In deciding on proposals to introduce new technologies or to curtail existing ones, some key questions arise concerning alternatives, risks, costs, and benefits. What alternative ways are there to achieve the same ends, and how do the alternatives compare to the plan being put forward? Who benefits and who suffers? What are the financial and social costs, do they change over time, and who bears them? What are the risks associated with using (or not using) the new technology, how serious are they, and who is in jeopardy? What human, material, and energy resources will be needed to build, install, operate, maintain, and replace the new technology, and where will they come from? How will the new technology and its waste products be disposed of and at what costs? 3C/H3 The human species has a major impact on other species in many ways: reducing the amount of the earth's surface available to those other species, interfering with their food sources, changing the temperature and chemical composition of their habitats, introducing foreign species into their ecosystems, and altering organisms directly through selective breeding and genetic engineering. 3C/H4 Human inventiveness has brought new risks as well as improvements to human existence. 3C/H5

Tydens die ontwikkeling van Atlas of Science Literacy, Volume 2, het Projek 2061 die bewoording van sommige maatstawwe hersien om die wetenskap by te werk, die logiese vordering van idees te verbeter en die huidige navorsing oor studenteleer te weerspieël. Nuwe maatstawwe is ook geskep soos nodig om verwante idees te akkommodeer in ander leerdoelwitdokumente soos Science for All Americans (SFAA), die National Science Education Standards (NSES), en die opstelle of ander elemente in Benchmarks for Science Literacy (BSL). Ons bied toegang tot beide die huidige en die 1993-weergawes van die maatstawwe as 'n diens aan ons eindgebruikers.

Die teks van elke leerdoelwit word gevolg deur sy kode, wat bestaan ​​uit die hoofstuk, afdeling, graadreeks en die nommer van die doelwit. Kleinletters aan die einde van die kode dui aan van watter deel van die 1993-weergawe dit kom (bv. “a” dui die eerste sin in die 1993-weergawe aan, “b” dui die tweede sin aan, ensovoorts). 'n Enkele sterretjie aan die einde van die kode beteken dat die leerdoelwit geredigeer is vanaf die oorspronklike, terwyl twee sterretjies beteken dat die idee 'n nuwe leerdoel is.

Kopiereg & kopie 1993,2009 deur American Association for the Advancement of Science


Metodes

Recruitment and spawning stock biomass indices

The 0-group polar cod data were sampled on annual surveys run between late August and early October in the period 1990 and 2017, covering almost the entire Barents Sea within a regular grid of

65 km. At each station the upper water layer (0–60 m) was sampled by three pelagic trawls with a 20 × 20 m opening, keeping the headlines at 0 m, 20 m, and 40 m. The pelagic trawls were towed at a speed of 3 knots over a time interval of 10 min, corresponding to a tow length of 0.5 nautical miles (≈0.93 km). If dense concentrations of fish appeared on the echo-sounder deeper than 40 m, additional tows were performed at 60 and 80 m. During the study period of 27 years 8302 of these depth-integrated trawl hauls were done. Due to the selectivity of the gear 37 , the catches were adjusted for capture efficiency using a stratified sample mean method 38,39 . As a proxy for total stock biomass (TSB) we estimated the total mass of polar cod found in echo-sounder transects and pelagic trawls throughout the Barents Sea 17 , identical to the method used for estimating capelin (Mallotus villosus) stock size in the Barents Sea 40 .

Ocean circulation model and ice module

The hydrodynamic model used to represent the currents and oceanographic conditions (i.e. temperature, salinity, and ice concentration/cover) in the study area was based on the Regional Ocean Modeling System (ROMS, http://myroms.org), a free-surface, hydrostatic, primitive equation ocean general circulation model 41,42 . The ROMS model was run with a horizontal resolution of 4 × 4 km in an orthogonal, curvilinear grid covering parts of the North Atlantic and all the Nordic and Barents seas (see inset in Fig. 1 for extent of ROMS model) over the time period 1960–2017 20,43,44,45 . The output from ROMS contained velocity fields, ice concentration, temperature, and salinity in 32 terrain following vertical layers, and a temporal resolution of 24 h.

Drift simulations and search algorithm

The advection of particles in the horizontal plane was modelled by the Runge-Kutta fourth order scheme LADIM 46,47 . As early life stages of polar cod are usually found close to the surface 13 , particles were uniformly distributed in the upper 10 meters with a fixed depth throughout the drift phase from 1 January to 30 September. In an exhaustive search for potential spawning areas of polar cod in the Barents Sea, particles were released in a regular grid (≈40 km equidistance, 537 positions in total) across the entire Barents Sea shelf shallower than 400 m that had been covered by an ice concentration of more than 15% in the period 1990–2017 (see extent of release grid in Fig. 2). A new ensemble of 100 particles were released at every point in the grid, every day from 1 January to 30 April, repeated for every year between 1990 and 2017 (yielding a total of 639,030 particles each year). Subsequently, an objective search algorithm identified drift trajectories that intersected the 0-group observations of the autumn survey within a three-week period of the surveys. The ability of the drift trajectories to explain the observed 0-group abundance and distribution was thus interpreted as a confirmation of spawning at a given release point and a high larval survival integrated over the drift phase. To allow a direct comparison between number of simulated drift intersections and 0-group abundance, both indices were log-transformed and scaled between 0 and 1. In line with the hypothesis of ice as a prerequisite for spawning, the drift trajectories’ ability to predict the observed 0-group abundance was weighted by ice concentration at drift start point (i.e. at spawning area). To elucidate on the possible effects of heating on recruitment we extracted temperature profiles from all individual drift trajectories, and to decrease the effect of minor cold spells or heat waves on the subsequent analysis we applied a 10-day moving average filter on the temperature profiles.

Statistical modelling

A probabilistic map of 0-group polar cod presence was calculated by using a two-dimensional binomial GAM smoother, based on the geographical coordinates of pelagic trawls, presence-absence of polar cod larvae in the pelagic trawls, and using the logit-link function as implemented in R-package “mgvc” 48 . Moreover, to quantify the effect of environmental conditions on larval survival/recruitment strength, we fitted a linear regression model with recruitment strength as independent variable with the covariates Barents Sea ice cover (area of the Barents Sea covered by ice concentration higher than 15%, extracted from the ROMS model), maximum temperature encountered by larvae (10-day mean-filtered over 100 larvae released from the most likely spawning area for a given year), and estimated TSB. This regression model was fitted separately for the north-western (Svalbard) and south-eastern (Pechora Sea) spawning areas as implemented in the base R-package “stats” 49 . In the model selection phase, we applied a stepwise model selection scheme with the initial inclusion of all relevant variables, where only the variables deemed significant was included in the final model. Due to the high degree of collinearity between some of the variables, we also did a variance partitioning analysis to disentangle the separate and/or common effects of the variables 50 .

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.


Bespreking

Marine mammals are threatened both directly and indirectly by different human activities, such as fishing, whale watching, vessel collisions, acoustic disturbance, pollution, and modification or loss of available habitats 64 . Consequently, 37% of marine mammals are already included in the IUCN Red List (3 species are labeled as critically endangered, 13 as endangered and 12 as vulnerable 65 ). However, the marine mammal vulnerability to global warming has never been assessed at the species and global levels. Here, using a species-level trait-based approach, we showed that many marine mammal species distributed across the northern hemisphere and belonging to different taxonomic groups (e.g., whales, dolphins and seals) were highly vulnerable to global warming (Fig. 3), even under a strong mitigation scenario (i.e., RCP2.6), which, according to the CMIP5 simulations, gives a two in three chance of limiting global warming to below 2 °C. A key finding from our study was that the North Pacific, which has already been identified as a hotspot of human threats for marine mammals 19,64 , is also a hotpot of vulnerability to global warming for this group. This implies that marine mammals in this region face double jeopardy from both human activities (e.g., marine traffic, pollution and offshore oil and gas development) and global warming, with potential additive or synergetic effects and as a result, these ecosystems face irreversible consequences for marine ecosystem functioning.

The marine mammals that are the most sensitive to climate change generally show marked feeding and habitat specialization, as well as reduced or fragmented geographical ranges (e.g., the dugong Dugong dugon and the walrus Odobenus rosmarus), which is consistent with the results of earlier studies that focused on diverse terrestrial and marine organisms 25,40,66,67,68 . Dependence on sea ice also seems to be a common denominator for many of the most sensitive marine mammals that are most sensitive to climate change 25 (e.g., the polar bear Ursus maritimus and the beluga whale Delphinapterus leucas).

By definition, the vulnerability index was higher for species that were both sensitive and exposed to global warming. The most vulnerable species according to both future RCP scenarios was the North Pacific right whale (Eubalaena japonica). This species has already been identified by the IUCN as an endangered species because of the absence of evidence of a recovering trend and the extremely low estimated number of individuals (

400 in the Okhotsk Sea and

100 in the rest of the North Pacific) 69 . While historically common in many areas of the North Pacific and Bering Sea, the North Pacific right whale was strongly depleted by intensive whaling in the mid-19 th century 70 . The second most vulnerable species was the gray whale (Eschrichtius robustus), which is classified as least concern by the IUCN, as its population size has been estimated to be above the threshold for the threatened category and the eastern subpopulation has increased over the last three generations 71 . However, the gray whale subpopulations in the western North Pacific are listed as critically endangered by the IUCN. Indeed, decades of commercial whaling led to the complete collapse of this subpopulation in much of its historical range. The Pacific right whale and the gray whale were also found to be functionally unique, i.e., with unique combinations of functional traits. Their potential extinction could have large consequences on marine ecosystem functioning 72 . For example, the gray whale can resuspend large amounts of sediment and nutrients in the water column, which in turn enhances nutrient cycling and brings some benthic crustaceans that serve as food for seabirds to the ocean surface 73 . For this species, a recent study showed that dispersal occurred between the eastern North Pacific and the North Atlantic during the Pleistocene and Holocene warming periods 63 , following the opening of the Bering Strait. While this study suggests that climate warming may create favorable thermal conditions in the North Atlantic, where the gray whale was historically present, it remains uncertain if the eastern Pacific population will be able to establish a persistent population in the North Atlantic over a long time period. As suggested by 74 , the northern limit of the range of this species is only occupied during the summer months, and individuals following the traditional migratory routes may have limited movement through the Bering Strait. Then, the ongoing opening of the Northwest Passage, which is a consequence of climate warming, has created new opportunities for marine traffic and gas and oil activities, which may negatively impact gray whale migrations 73,74 . Overall, the gray whale and the Pacific right whale should be of particular concern for conservation prioritization given their high levels of vulnerability to climate change, their high functional originality and the current threats that they are facing.

For some species, such as the dugong or the walrus, the level of vulnerability differed between the RCP2.6 and the RCP8.5 scenarios. Both species were shown to be highly sensitive to climate change but not highly exposed, according to the RCP2.6 scenarios (see Appendices 6 and 7). In contrast, under the RCP8.5 high emission scenario, these two species would be intensively exposed to global warming and hence would be highly vulnerable (see Appendices 6 and 7). This result highlights that economic and political decisions towards the reduction of CO2 emissions and the mitigation of global warming can have serious consequences for the level of threat a species will face. This is particularly important because these species, while not classified in the top 20 most vulnerable species, were shown to be highly distinct in their evolutionary histories, in the case of the dugong (Fig. 2b), and in their traits, in the case of the walrus (Fig. 2c). Thus, the extinction of these species could provoke the loss of unique and important evolutionary lineages as well as a disruption in ecosystem functioning.

Among the top 20 most vulnerable species to climate change, some are still abundant within their geographical ranges and have shown no evidence of population declines, according to the IUCN. This is particularly the case for the spotted seal (Phoca largha) or the Pacific white-sided dolphin (Lagenorhynchus obliquidens), which are classified as least concern (Fig. 2a). Several species are also classified as data deficient, such as Baird’s beaked whale (Berardius bairdii). For these species, we recommend considering their potential vulnerabilities to climate change when setting their IUCN statuses. This is even more critical than the potential extinction of the most vulnerable species within the least concern IUCN category, which may lead to a disproportional loss of functional diversity (Fig. 4b) and could ultimately disrupt marine ecosystem functioning 75 . More generally, it would be particularly useful to consider the level of vulnerability to climate change when evaluating the IUCN statuses of marine mammals to implement mitigation actions on species that are not currently threatened (or have insufficient data) but that could be threatened in the near future 76 .

Scaling up our vulnerability analysis to the species assemblage level showed that, regardless of the RCP scenario, the North Pacific Ocean, Greenland Sea and Barents Sea (Fig. 3c,d) hosted the marine mammals that were most vulnerable to global warming. Indeed, these regions might face the strongest effects from global warming under both emissions scenarios (Fig. 3a,b) and have already undergone temperature increases 2–3 times higher than the changes to the global mean surface temperature over the past 150 years 1 . These regions should therefore be of particular concern for spatial monitoring for the conservation of marine mammals. Indeed, there are multiple threats to the marine mammals 77 in the North Pacific Ocean, the Greenland Sea and the Barents Sea, such as marine traffic and offshore oil and gas exploitation that are known to impact cetaceans, such as through ocean noise pollution. These current threats could have additive or synergetic effects with climate change, which may therefore increase the overall vulnerability of marine mammals. In that context, future studies should focus on evaluating whether the combined effects of habitat loss, marine pollution and climate change are greater than the effects of each threat individually, which is challenging but crucial for providing effective conservation actions for marine mammals. In addition, these studies should consider the use of a finer spatial resolution to account for the species-habitat relationships (e.g., 78 ), which is required to evaluate the potential impacts of climate change on the regional spatial distributions of marine mammals.

Our results also suggested that the potential extinction of the marine mammals that are most vulnerable to global warming may lead to a disproportionate loss of functional diversity in the global marine mammal fauna (Fig. 4a) many of the most vulnerable species displaying a high level of functional originality (see Fig. S6). This projected loss of functional diversity may ultimately threaten marine ecosystem stability and service provisioning 33,75 . Similar findings have been reported for birds 77,79 and marine fishes 80 under climate change scenarios. These findings have a particular resonance in the context of the recent geological past. During the Plio-Pleistocene, large climatic oscillations and sea level changes caused numerous extinctions among the global marine megafauna, which directly induced an important loss of functional diversity that was not fully compensated by the evolution of new genera 81 . Marine megafauna have therefore been more sensitive to past environmental changes than previously assumed 82 , which implies that future climate change could pose a great challenge for large marine animals, especially mammals. However, our findings should be extended by downscaling our approach to a finer spatial resolution to assess the potential effects of climate change on the functional trait compositions of the local assemblages (for marine fishes 80 and for birds 79 ), which could have useful applications for prioritization in spatial conservation planning.


Kyk die video: Ace Ventura: Pet Detective 1994 REACTION (September 2022).


Kommentaar:

  1. Sorley

    Incomparable theme, I like it :)

  2. Tejar

    It is simply matchless phrase ;)

  3. Aubrey

    die regte antwoord

  4. Ghoukas

    dit lyk my dit is die wonderlike idee

  5. Akins

    cool ... it was interesting to read



Skryf 'n boodskap