Inligting

Haal diere net deur een neusgat op 'n slag asem soos mense?

Haal diere net deur een neusgat op 'n slag asem soos mense?



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Mense haal asem deur een neusgat op 'n slag.

Doen nie-menslike diere dit ook, of haal hulle gelyktydig deur albei neusgate asem? Is enige werklike studie oor hierdie onderwerp gedoen?


Die plasing wat deur @Remi.b gekoppel is, sê

Die nasale siklus is 'n natuurlike ultradiese siklus (sien hier en hier. Nie net is dit by mense teenwoordig nie, die nasale siklus is waargeneem by rotte, hase, mak varke, katte en honde (sien verwysings in Eccles 1996).

Gaan voort na Eccles 1996 (bl. 372):

Die nasale siklus is nie net beperk tot die menslike neus nie, want dit is gevind in die rot en konyn [31], die mak vark [32, 33], die kat [34] en die hond [35], en blykbaar wees 'n universele verskynsel ten minste in alle soogdiere en moontlik ander diere ...

  1. Bojsen-Moller F, Fahrenkrug J. Nasale swelliggame en sikliese veranderinge in die lugweë van die rot- en konynneus. Anat 1971; 110: 25-37.
  2. Eccles R. Die mak vark as proefdier vir studies oor die nasale siklus. Acta Otolaryngol (Stockh) 1978; 85: 431-436.
  3. Campbell WM, Kern EB. Die nasale siklus by varke. Rhinologie 1981; 19: 127-148.
  4. Bamford OS, Eccles R. Die sentrale wederkerige beheer van nasale vasomotoriese ossillasies. Pflügers Arch 1982; 394: 139-143.
  5. Webber RL, Jeffcoat MK, Harman JT, Ruttimann UE. Demonstrasie van die nasale siklus by die brakhond. J Comput Assist Tomogr 1987; 11: 869-871.

'n Pubmed-soektog na '"nasale siklus"-dier' ​​kry 'n totaal van 18 trefslae, insluitend refs 32 en 35 hierbo, asook

  • Spontane nasale ossillasies by honde. 'n Mukosale uitdrukking van die respirasieverwante aktiwiteite van servikale simpatiese senuwee. Asakura K, Hoki K, Kataura A, Kasaba T, Aoki M. Acta Otolaryngol. 1987 Nov-Des;104(5-6):533-8.
  • Verrigtinge: Studies oor die nasale siklus by die geïmmobiliseerde vark. Eccles R, Maynard RL. J Fisiol. 1975 Mei;247(1):1P.

'n Bietjie meer grawe vorentoe en agtertoe deur aanhalings vind die artikel oor katte (ook deur Eccles):

R. Eccles & R. L. Lee (1981) Nasale vasomotoriese ossillasies in die kat geassosieer met die respiratoriese ritme, Acta Oto-Laryngologica, 92:1-6, 357-361, DOI: 10.3109/0001648270913

Jy mag vind meer as jy rondkyk (Google Scholar/Pubmed, kyk na aanhalings vorentoe en agtertoe, probeer soekterme soos "'nasale siklus' voël" of "'nasale siklus' reptiel"), maar op hierdie stadium twyfel ek of iemand die moeite doen om kontroleer dit by nie-soogdiere ...


Verrassende feite oor jou neus

Ons neuse is oor die algemeen die onderwerp van beide bewondering en kritiek. Sommige is lief vir hul neus, ander sal dit verander as hulle kon.

Cleveland Clinic is 'n akademiese mediese sentrum sonder winsoogmerk. Advertering op ons webwerf help om ons missie te ondersteun. Ons onderskryf nie nie-Cleveland Clinic produkte of dienste nie. Beleid

Maar dit is maklik om te vergeet dat jou neus, saam met jou oë en mond, nie net jou visuele identiteit uitmaak nie. En daar kan 'n argument wees om dit lief te hê soos dit is.

Volgens oor-, neus- en keelspesialis Michael Benninger, besturende direkteur, is veral jou neus een van die mees komplekse en elegante organe in jou liggaam. Dit verrig kritieke lewensfunksies en verdien werklik groot rekwisiete vir sy rol om jou aan die lewe en veilig te hou - en heel dikwels tevrede.

Dit is selfs verantwoordelik vir jou sekslewe. (Dit is waar).

"Jou neus is die eerste orgaan in jou boonste respiratoriese stelsel en een van die hoofredes waarom jy beide oorleef en floreer," sê hy.

Hier wys Dr Benninger verskeie verrassende feite oor jou neus uit wat jy dalk nie weet nie.

1. Jou neus bevat jou asem

Jy is waarskynlik reeds waardeer vir jou asem, maar dit is nogal 'n groot probleem aangesien jou neus en mond die pad is van lug wat jou longe binnegaan en verlaat. In normale daaglikse asemhaling is jou neus die primêre pad.

Selfs tydens oefening waar mondasemhaling meer dominant word, gaan daar ook nog lug deur jou neus.

"Dit is altyd interessant dat alhoewel jou mond 'n groter buis is, mense meer ongemaklik voel as hul neuse toegestop of verstop is," merk dr Benninger op. "Dit is hoe belangrik jou neus regtig is."

Nasale asemhaling is ook die mees kritieke by pasgeborenes wat byna heeltyd deur hul neuse asemhaal. Dr. Benninger voeg by, "Dit is 'n unieke kenmerk wat verband hou met die opstelling van hul kele wat hulle in staat stel om terselfdertyd asem te haal en te soog, sonder om te verstik."

"Dit gebeur nie by ouer kinders of volwassenes nie," voeg hy by. “Ons moet ophou asemhaal om te sluk. Iets om te waardeer die volgende keer as jy vir 'n paar sekondes nie lug in jou neus kry nie.”

2. Jou neus bevogtig die lug wat jy inasem

Jou neus verwerk die lug wat jy inasem, en berei dit voor vir jou longe en keel wat droë lug nie goed verdra nie.

Soos ingeasemde lug deur jou neus beweeg, word dit bevogtig en bevochtig danksy 'n veelvuldige lugbaan met drie stelle turbinate (genoem boonste, middelste en onderste conchae). Dit is lang benige strukture bedek met 'n laag weefsel wat uitsit en saamtrek.

Hierdie pad is waar dreinering en vog gereguleer word. As jy 'n droë keel het, beteken dit dat die lug in hierdie gang moontlik nie bevogtig is nie.

Dit is ook die plek waar die toon van jou stem gevorm word soos lug deurgaan en die gang uitbrei of saamtrek.

3. Jou neus maak die lug wat jy inasem skoon

Die lug wat ons inasem het allerhande goed in – van suurstof en stikstof tot stof, besoedeling, allergene, rook, bakterieë, virusse, klein goggas en talle ander dinge. Jou neus help om dit skoon te maak.

Op die oppervlak van die nasale weefsels in jou turbinate is daar selle met klein hare-agtige aanhangsels genoem silia wat die slegte puin in die lug vasvang sodat dit nie in jou longe kom nie. In plaas daarvan sit die puin in die slym en word uiteindelik in jou keel gedruk en ingesluk.

"Dit is uiters voordelig aangesien ons mae die hantering van slegte puin baie beter verdra as wat ons longe doen," sê dr. Benninger.

4. Jou neus reguleer die temperatuur van jou asem

Op dieselfde manier hou jou keel en longe nie van vuil lug nie, hulle hou ook nie van lug wat te koud of te warm is nie.

Volgens dr. Benninger laat die deurlaat van die lug deur jou neus die lug meer soos jou liggaamstemperatuur word, wat beter deur jou weefsel verdra word.

Om koel lug in jou neus te verwarm is meer algemeen as om warm lug af te koel. Dit is omdat mense baie meer van hul tyd spandeer in omgewings onder liggaamstemperatuur - 98,6 ° - as daarbo.

"Daardie loopneus wat jy in koue weer kry, is die beste voorbeeld van hierdie verwarmende en bevogtigende effek," sê hy. "Dit kom van die kondensasie van die vog in jou neus wanneer die koue lug ingaan."

5. Jou neus beskerm jou deur reuk

Hoog in jou neus is 'n groot aantal senuweeselle wat reuke opspoor. Om te ruik, moet die lug wat ons inasem heelpad opgetrek word om met hierdie senuwees in aanraking te kom.

Reuk speel 'n sleutelrol in smaak. Ons het vier primêre smake: bitter, suur, soet en sout. Al die verfynings in smaak hou verband met reuk. Dit is hoekom mense voel dat kos smaakloos is wanneer hul vermoë om te ruik verminder word.

“Reuk en smaak is nodig vir veiligheid. Ons het ons reuk nodig om rook, bedorwe kos en 'n paar giftige gifstowwe of gasse op te spoor,” sê dr. Benninger.

Wanneer ons verkoue of allergieë het, is dit moeilik vir die lug om by hierdie reseptore uit te kom, so mense merk 'n verminderde vermoë om te ruik.

Diegene wat hul reuksintuig heeltemal verloor het, moet alarms hê vir hierdie gasse en moet meer aandag gee aan wat hulle eet.

6. Reuk is belangrik in identifikasie, geheue en emosie

Reukpartners met jou reukbol wat in die voorste deel van jou brein, net bokant jou neusholte, geleë is. Dit is die deel van jou brein’s limbiese stelsel en word geassosieer met geheue. Ons identifiseer ander mense deur die geheue van wat hul persoonlike reuk is.

Dr Benninger wys uit hoe dit werk. “Jy onthou dalk iemand spesifiek wanneer jy ’n sekere parfuum, seep of soortgelyke liggaamsreuk ruik. As dit jou geheue aanwakker en jy raak nostalgies en emosioneel, is dit ook omdat die limbiese sisteem geassosieer word met die beheer van die emosionele deel van jou brein.”

7. Jou neus help jou om 'n maat te vind

"Dit is ongelooflik hoeveel van ons liggaamsfunksies gerig is op seksuele aktiwiteit en voortplanting," sê dr Benninger.

Nie net veroorsaak jou reukstelsel geheue nie, maar jou neus speel 'n kritieke rol wanneer dit met jou reukstelsel gepaard gaan in jou persepsie van seks.

Daardie kenmerkende reuk van 'n persoon se parfuum, kologne of die geur van hul sjampoe of seep is belangrik vir seksuele opwinding. Die reuk van menslike sweet het ook 'n direkte effek op seksuele reseptore in die brein. En verlies aan reuk korreleer met verminderde seksuele drang.

Nog 'n interessante en wyd gedebatteerde area is die impak van feromone. Dit is baie belangrik vir voortplanting by diere, sowel as vir menslike seksualiteit en stimulasie.

'n Klein bykomstige orgaan in die neus - die vomeronasale orgaan (VNO) - is verwant aan die reukstelsel. Sommige verwys daarna as die sesde sintuig. Die VNO is aan die basis van jou neusseptum (in die dak van jou mond) geleë en byna alle diere, insluitend amfibieë, het dit.

"By mense is die VNO grootliks vestigiaal of nie-funksioneel, en tree op as 'n ou oorblyfsel soos jou blindederm. Maar sommige navorsers glo dat dit steeds 'n rol speel in feromoon en ander chemiese kommunikasie,” sê dr. Benninger.

8. Jou neus vorm die klank van jou stem

Wat ons hoor wanneer mense praat en sing, hou grootliks verband met die resonerende strukture van die keel en neus.

Jou stem word in die larinks geproduseer, maar daardie geluid is regtig 'n gonsgeluid. Die rykheid van die klank word bepaal deur hoe die klank bo die larinks verwerk word, wat in jou neus en keel voorkom.

Volgens dr Benninger is dit dieselfde beginsel wat 'n vleuelklavier van 'n kind se speelgoedklavier skei. Die nasale stem wat ons hoor in iemand met 'n verkoue en allergieë is te wyte aan 'n verlies van hierdie nasale resonasie aangesien lug nie deur die neus kan gaan nie.

9. Jou neus en sinusse is 'n kragtige duo

Sinusse speel ook 'n deel van die resonansie in jou stem.

Dit is moeilik om oor die neus te praat sonder om die sinusse te noem, wat 'n aantal belangrike en positiewe rolle het, volgens dr Benninger.

Jou sinusse is luggevulde strukture in jou kop wat jou kop ligter maak en het waarskynlik 'n belangrike rol gespeel om ons regop te laat staan. Hulle dien ook as lugkussingsskokbrekers wat help om jou brein en oë te beskerm.

Die vennootskap tussen jou neus en sinusse help om die hoeveelheid stikstofoksied in jou liggaam en in jou longe te beheer. Hulle speel ook 'n groot rol in jou immuunfunksie.

"Wanneer dit by jou neus kom, is daar baie wonderlike inligting om oor na te dink," sê dr. Benninger, "Maar volgende keer as jy in 'n spieël kyk, wil jy dalk 'n nuwe respek vir die ongelooflike – en enigste – oorweeg. jy’het.”

Cleveland Clinic is 'n akademiese mediese sentrum sonder winsoogmerk. Advertering op ons webwerf help om ons missie te ondersteun. Ons onderskryf nie nie-Cleveland Clinic produkte of dienste nie. Beleid


Soogdiere kan in noodgevalle deur anus asemhaal

Twee pigmeevarke hardloop rond by die 10de Thailand internasionale Pet Variety Exhibition in Bangkok

Knaagdiere en varke deel met sekere waterorganismes die vermoë om hul ingewande vir asemhaling te gebruik, vind 'n studie wat 14 Mei in die joernaal gepubliseer is Med. Die navorsers het getoon dat die lewering van suurstofgas of suurstofhoudende vloeistof deur die rektum noodsaaklike redding verskaf het aan twee soogdiermodelle van respiratoriese versaking.

"Kunsmatige asemhalingsondersteuning speel 'n belangrike rol in die kliniese bestuur van respiratoriese versaking as gevolg van ernstige siektes soos longontsteking of akute respiratoriese noodsindroom," sê senior studie skrywer Takanori Takebe van die Tokyo Medical and Dental University en die Cincinnati Children's Hospital Medical Centre. "Alhoewel die newe-effekte en veiligheid deeglik by mense geëvalueer moet word, kan ons benadering 'n nuwe paradigma bied om kritiek siek pasiënte met respiratoriese versaking te ondersteun."

Verskeie waterorganismes het unieke intestinale asemhalingsmeganismes ontwikkel om onder lae-suurstoftoestande te oorleef deur ander organe as longe of kieue te gebruik. Byvoorbeeld, seekomkommers, varswatervisse genoem loaches, en sekere varswater baber gebruik hul ingewande vir asemhaling. Maar daar is hewig gedebatteer of soogdiere soortgelyke vermoëns het.

In die nuwe studie verskaf Takebe en sy medewerkers bewyse vir intestinale asemhaling by rotte, muise en varke. Eerstens het hulle 'n dermgasventilasiestelsel ontwerp om suiwer suurstof deur die rektum van muise toe te dien. Hulle het gewys dat sonder die stelsel geen muise 11 minute van uiters lae-suurstoftoestande oorleef het nie. Met dermgasventilasie het meer suurstof die hart bereik, en 75% van muise het 50 minute van normaalweg dodelike lae-suurstoftoestande oorleef.

Omdat die dermgasventilasiestelsel skuur van die dermsmuskosa vereis, is dit onwaarskynlik dat dit klinies haalbaar sal wees, veral in ernstig siek pasiënte—so die navorsers het ook 'n vloeistof-gebaseerde alternatief ontwikkel deur geoksigeneerde perfluorochemikalieë te gebruik. Daar is reeds klinies bewys dat hierdie chemikalieë bioversoenbaar en veilig is by mense.

Die dermvloeistofventilasiestelsel het terapeutiese voordele verskaf aan knaagdiere en varke wat aan nie-dodelike lae-suurstoftoestande blootgestel is. Muise wat dermventilasie ontvang, kon verder in 'n 10% suurstofkamer loop, en meer suurstof het hul hart bereik, in vergelyking met muise wat nie dermventilasie ontvang het nie. Soortgelyke resultate was duidelik by varke. Dermvloeistofventilasie het die bleekheid en koue van die vel omgekeer en hul suurstofvlakke verhoog, sonder om ooglopende newe-effekte te veroorsaak. Saamgevat toon die resultate dat hierdie strategie doeltreffend is om suurstof te verskaf wat sirkulasie bereik en asemhalingsversaking simptome in twee soogdiermodelstelsels verlig.

Met ondersteuning van die Japanse Agentskap vir Mediese Navorsing en Ontwikkeling om die koronavirussiekte 2019 (COVID-19) pandemie te bekamp, ​​beplan die navorsers om hul prekliniese studies uit te brei en regulatoriese stappe te volg om die pad na kliniese vertaling te versnel.

"Die onlangse SARS-CoV-2-pandemie oorweldig die kliniese behoefte aan ventilators en kunsmatige longe, wat 'n kritieke tekort aan beskikbare toestelle tot gevolg het en pasiënte se lewens wêreldwyd in gevaar stel," sê Takebe. "Die vlak van arteriële oksigenasie wat deur ons ventilasiestelsel verskaf word, indien afgeskaal vir menslike toepassing, is waarskynlik voldoende om pasiënte met ernstige respiratoriese versaking te behandel, wat moontlik lewensreddende oksigenasie verskaf."


5 Tipes respiratoriese stelsels in spinnekoppe

  1. 'n Enkele paar boeklonge, soos binne die suborde Pholcidae.
  2. Twee pare boeklonge, soos binne die suborde Mesothelae en die infra-orde Mygalomorphae
  3. Slegs een paar buisvormige tragea, of sif tragea vir sommige spinnekoppe, soos die Symphytognathidae-spinnekopfamilie.
  4. Twee pare buisvormige trageae, of sif tragea, soos in die Caponiidae familie van spinnekoppe.
  5. ’n Paar trageae en ’n paar boeklonge, soos by wolfspinnekoppe en bolwewers. Dit is ook duidelik by 'n meerderheid spinnekopspesies.

Neem asseblief kennis: Sommige wetenskaplikes glo nie daar is veel van 'n verskil tussen buisvormige trageae en sif-lugpype om hulle anders te klassifiseer nie. Jy sal egter vind dat ander wetenskaplikes wel die onderskeid tref tussen die buis- en siflugpyp.

Spinnekoppe het vier respiratoriese funksies wat saamwerk om die spinnekop in staat te stel om asem te haal. Die boeklonge en die spirakel van die boeklonge is aan die voorkant geleë, wat die voorkant van die spinnekop is. Vir spinnekoppe met 'n tragea is die tragea aan die agterkant geleë, wat na die agterkant van die spinnekop is. Hierdie twee stelle respiratoriese organe verskil van een individuele spinnekopspesie na 'n ander. Sommige spinnekoppe het twee stelle boeklonge terwyl ander spinnekoppe twee stelle trageae het. Selfs steeds, sommige spinnekoppe het 'n kombinasie van beide waar die tragea aan die voorkant is, en die boeklonge aan die agterkant geleë is.

Boeklonge is stapels van tien tot tagtig hol, blaarskywe. Die aantal hol skywe wat gestapel word, hang af van die spesie spinnekop. Spinnekoppe, soos tarantulas, in die Mygalomorphae infra-orde en Mesothelae suborde, het twee pare boeklonge. Wetenskaplikes het gevind dat baie primitiewe spinnekopspesies die kenmerk van 'n stel boeklonge het in vergelyking met net een paar.

Die boeklonge is versadig met ligblou hemolimf. Hemolif is soortgelyk aan bloed vir 'n spinnekop. Dan filtreer die boeklonge of tragea, afhangende van die spinnekop, die suurstof vir absorpsie en stel koolstofdioksied in die lug vry deur 'n proses wat diffusie genoem word.

Hemolimf is baie soortgelyk aan die hemoglobien wat ysterryke voedingstowwe dra. In die geval van spinnekoppe, dra hemosianien, wat 'n proteïenryke respiratoriese pigment is, eerder suurstof en koolstofdioksied binne hemolimf. Hemolimf is 'n ligblou kleur as gevolg van die koperatome wat dit ook dra.

Die Tragea

Die trageae is lang buise wat by klein gaatjies aan die onderkant van die eksoskelet begin en deur die liggaam van die spinnekop strek wat suurstof aan interne organe verskaf. Lug word geabsorbeer deur die vel of baie klein tragea-gate wat aan die onderkant van die spinnekop-buik geleë is. Dit is 'n algemene oortuiging van aragnoloë en entomoloë dat die tragea 'n nuwe kenmerk is wat met genetiese aanpassing geïntegreer is. Sommige spesies met hierdie tragea-kenmerk sluit in wolfspinnekoppe, bolspinnekoppe en pappa-langbene.

Die spinnekop moet beweeg om die boeklonge te laat werk. Die beweging van 'n spinnekop verskaf die nodige energie sodat lug in en uit die boeklonge of tragea gedruk kan word. Spinnekoppe benodig egter minder suurstof as wat mense doen. Daarom kan hulle ure tot selfs dae gaan sonder om asem te haal. Dit is hoekom hulle so stil in hul web kan bly en wag vir hul volgende maaltyd of hoekom jy 'n spinnekop in 'n pot sonder gate kan vang en hulle dae later nog lewendig kan wees. Wees dus versigtig die volgende keer as jy kies om 'n spinnekopmonster vas te vang. Dit is dalk nog lewendig wanneer jy die fles dae later oopmaak.

Alhoewel die asemhalingstelsel van 'n spinnekop baie eenvoudiger is in vergelyking met soogdiere, is die innerlike werking van 'n spin verstommend. Hulle is baie veerkragtige wesens, so moenie die oorlewingsyfer van spinnekoppe onderskat nie. Hulle is toegerus om die moeilikste tye en omstandighede te oorleef. Een manier waarop dit duidelik is, is in die manier waarop hulle asemhaal, en tog vir ure kan gaan sonder om enigsins asem te haal.

Kies die beste antwoord vir elke vraag. Die antwoordsleutel is hieronder.

  1. Waar is die boeklonge geleë?
    • anterior einde
    • posterior einde
  2. Waar is die lugpype geleë?
    • anterior einde
    • posterior einde
  3. Watter kleur is die hemolif?
    • rooi
    • geel
    • ligblou
    • donkerblou
  4. Wat word in die hemolif gedra?
    • Slegs suurstof en koolstofdioksied
    • suurstof, koolstofdioksied en koper
    • suurstof, koolstofdioksied, koper en yster
    • suurstof, koolstofdioksied, koper en proteïen
  5. Hoeveel tipes respiratoriese stelsels het spinagtiges?
    • 3
    • 4
    • 5
  6. Wat moet spinnekoppe doen om die boeklonge te laat werk?
    • bly stil
    • beweeg
    • maak 'n web
  7. Waar of Onwaar: Spinnekoppe kan 'n paar weke verbygaan sonder om asem te haal.
    • Waar
    • onwaar

Antwoord sleutel

  1. anterior einde
  2. posterior einde
  3. ligblou
  4. suurstof, koolstofdioksied, koper en proteïen
  5. 5
  6. beweeg
  7. Waar

Vertolking van jou telling

As jy tussen 0 en 2 korrekte antwoorde gekry het: Jy kan dalk oorweeg om die materiaal weer te lees.

As jy tussen 3 en 4 korrekte antwoorde gekry het: Oeps! Spinnekopfisiologie kan soms moeilik wees. Lees deur die materiaal om die inligting wat jy gemis het, te leer en te verstaan.

As jy 5 korrekte antwoorde gekry het: Amper! Jy het dalk sekere besonderhede oor die hoof gesien. Oorweeg om die materiaal weer te bestudeer sodat jy 'n beter begrip van die spinnekop-respiratoriese stelsel kan hê.

As jy 6 korrekte antwoorde gekry het: Goeie werk! Jy is op pad om 'n arachnoloog te word!

As jy 7 korrekte antwoorde gekry het: Pad om te gaan!! Het jy al ooit oorweeg om 'n arknooloog te word? Jy is dalk goed daarmee.

© 2014 Linda Sarhan


Haal diere net deur een neusgat op 'n slag asem soos mense? - Biologie

Nuwe internasionale weergawe
Hou op om op blote mense te vertrou, wat net 'n asem in hul neusgate het. Hoekom hou hulle in ag?

Nuwe Lewende Vertaling
Moenie jou vertroue in blote mense plaas nie. Hulle is so broos soos asem. Wat baat hulle?

Engelse standaard weergawe
Hou op met die mens in wie se neusgate asem is, om watter rede is hy?

Berean Studie Bybel
Vertrou nie meer op die mens wat net die asem in sy neusgate het nie. Van watter rekening is hy?

King James Bybel
Hou op van die mens wie se asem is in sy neusgate, want waarin moet hy verantwoording doen?

Nuwe King James-weergawe
Skei julle van so 'n man wie se asem is in sy neusgate. Waarom is hy?

Nuwe Amerikaanse Standaard Bybel
Neem geen rekening met die mens wie se asem nie van die lewe is in sy neusgate Want waarom moet hy geag word?

NASB 1995
Hou op met die mens wie se lewensasem in sy neusgate is, want waarom moet hy geag word?

NASB 1977
Hou op met betrekking tot die mens wie se asem van die lewe is in sy neusgate Want waarom moet hy geag word?

Versterkte Bybel
Hou op met die mens wie se asem [van die lewe] in sy neus is [vir so kort tyd] Want waarom moet hy geag word?

Christelike Standaard Bybel
Vertrou nie meer op 'n blote mens, wat net die asem in sy neusgate het nie. Wat is hy regtig werd?

Holman Christelike Standaard Bybel
Vertrou nie meer op die mens wat net die asem in sy neusgate het nie. Wat is hy regtig werd?

Amerikaanse standaard weergawe
Hou op van die mens wie se asem in sy neusgate is, want waarmee moet hy gereken word?

Aramese Bybel in gewone Engels
Onttrek julle van die mens wie se asem in sy neusgate is, want hoe word hy geag?

Kontemporêre Engelse weergawe
Hou op om die krag van mense te vertrou. Hulle gaan almal dood, so hoe kan hulle help?

Douay-Rheims Bybel
Hou dan op van die man wie se asem in sy neusgate is, want hy is hoog geag.

Engelse Hersiene Weergawe
Hou op van die mens wie se asem in sy neusgate is; want waarmee moet hy gereken word?

Goeie Nuus Vertaling
Stel nie meer vertroue in sterflinge nie. Wat is hulle werd?

GOD SE WOORD® Vertaling
Hou op om mense te vertrou. Hulle lewe is in hulle neusgate. Hoe kan hulle iets werd wees?

Internasionale Standaard weergawe
"Hou op om op mense te vertrou wie se lewensasem in hulle neusgate is, want wat is hulle werklik werd?"

JPS Tanakh 1917
Hou op van die mens, in wie se neusgate 'n asem is, want hoe min is hy te reken!

Letterlike Standaard weergawe
Hou op van die mens wie se asem in sy neusgate is, want waarin word hy geag?

NET Bybel
Hou op om op mense te vertrou wie se lewensasem in hulle neusgate is. Want hoekom moet daar spesiale aandag aan hulle gegee word?

Nuwe Hart Engelse Bybel
Hou op om op die mens te vertrou, wie se asem in sy neusgate is, waarom is hy?

Wêreld Engelse Bybel
Hou op om op die mens te vertrou, wie se asem in sy neusgate is, om watter rede is hy?

Young se letterlike vertaling
Hou op vir jou van die mens wie se asem in sy neusgate is, want waarin word hy geag?

Jakobus 4:14
Jy weet nie eers wat môre gaan gebeur nie! Wat is jou lewe? Jy is 'n mis wat vir 'n rukkie verskyn en dan verdwyn.

Psalm 8:4
wat is die mens dat U aan hom dink, of die mensekind dat U vir hom sorg?

Psalm 144:3
O HERE, wat is die mens dat U hom aansien, die mensekind dat U aan hom dink?

Psalm 144:4
Die mens is soos 'n asem sy dae is soos 'n verbygaande skaduwee.

Psalm 146:3
Vertrou nie op vorste, op sterflike mense wat nie kan red nie.

Jesaja 40:15
Sekerlik, die nasies is soos 'n druppel in 'n emmer hulle word beskou as 'n stofkol op die weegskaal. Hy lig die eilande op soos fyn stof.

Jesaja 40:17
Al die nasies is as niks voor Hom Hy beskou hulle as niks en leegheid.

Hou op met die mens wie se asem in sy neusgate is, want waarmee moet hy gereken word?

Psalm 62:9 Sekerlik manne van lae graad is ydelheid, en manne van hoë graad is 'n leuen: in die weegskaal gelê word, hulle is geheel en al ligter as ydelheid.

Psalm 146:3 Vertrou nie op vorste nie, ook nie in die seun van die mens, in wie daar is geen hulp nie.

Jeremia 17:5 So sê die Here vervloek wees die man wat op die mens vertrou en vlees sy arm maak, en wie se hart van die HERE afwyk.

Genesis 2:7 En die HERE God het die mens geformeer van die stof van die aarde, en die asem van die lewe in sy neusgate geblaas en die mens het 'n lewende siel geword.

Genesis 7:22 Almal in wie se neusgate was die asem van die lewe, van dit alles was in die droë land, gesterf het.

Job 27:3 Die hele tyd my asem is in my, en die gees van God is in my neusgate

Job 7:15-21 Sodat my siel wurg kies, en dood eerder as my lewe…

Psalm 8:4 Wat is die mens, dat U aan hom dink? en die mensekind, dat U hom besoek?

Psalm 144:3,4 HERE, wat is mens, dat jy hom leer ken! of die seun van die mens, dat U aan hom rekenskap moet gee! …


'n Meer doeltreffende stelsel

Voëls gebruik 'n meer doeltreffende stelsel, een waarin dunwandige lugsakke aan die longe verbind word. Soos getoon in die illustrasie van die kardinaal, vul die lugsakke die liggaamsholte. Hulle is nie direk by gaswisseling betrokke nie, maar funksioneer as blaasbalk om lugvloei deur die longe in een rigting, van agter na voor, te rig. Dit verhoog longdoeltreffendheid.

Nog 'n groot verskil tussen soogdiere en voëls is dat die druifagtige alveoli vervang word deur dunwandige, buisvormige strukture genaamd parabronchi (getoon regs onder in die diagram). Soos menslike alveoli, word voëlparabronchi deur 'n ryk voorraad kapillêre gedek en is dit die plekke vir gaswisseling. Parabronchi is regdeur die longe tussen sekondêre brongi geleë. Net soos lug in een rigting deur die longe beweeg, vloei dit ook in een rigting deur die parabronchi, van een sekondêre brongus na 'n ander.

Die geniale van die lugsakke is dat hulle deurlopende, eenrigtingvloei toelaat tydens beide inspirasie en ekspirasie. Die lugsakke is in twee groepe gerangskik: een kom van die voorkant van die longe af (anterior) en die ander van die agterkant van die longe (posterior). Hier is hoe die stelsel werk:

Tydens inspirasie brei die posterior lugsakke uit, wat lug in die primêre brongi trek, wat naby die verste punt van die longe eindig. Terwyl sommige van die lug deur sekondêre brongi naby die agterkant van die longe en in parabronchi herlei word, gaan die meeste daarvan direk in die posterior groep lugsakke in. Terselfdertyd brei die anterior lugsakke uit, wat lug van die parabronchi deur die sekondêre brongi trek. Dit skep die eenrigting terug-na-voor-vloei deur die longe.


Hoekom maak vorm saak?

Die neus se doel gaan verder as ruik en asemhaal. Dit help ook om die lug op te warm en te bevogtig voordat dit die longe bereik. Die regte temperatuur en humiditeitsvlakke is belangrik in die respiratoriese kanaal, want dit help die klein, haaragtige selle wat die kanaal voer om kieme en allergene uit te hou.

Trouens, die neus is so goed om lugtemperatuur en humiditeitsvlakke te reguleer dat die lug reeds 90 van die pad na sy ideale temperatuur en vogvlak is teen die tyd dat die lug die agterkant van die keel bereik, het die navorsers geskryf. [Shyg! 11 verrassende feite oor die respiratoriese stelsel]

Lug wat reeds warm en vogtig is, hoef nie veel te verander nie, aangesien dit deur die neusgate vloei. Koel en droë lug, aan die ander kant, moet verhit word, en vog moet bygevoeg word. Nouer neusgate kan help om dit te vergemaklik, aangesien hulle die lug meer onstuimiger laat invloei en in groter kontak kom met die warm, klam slym in die neus, het die navorsers geskryf. Inderdaad, dit was waarskynlik meer nuttig vir mense in koue en droë klimate om 'n nouer neus te hê, het senior studie Mark Shriver, 'n professor in antropologie aan die Pennsylvania State University, in 'n verklaring gesê.

Die nuwe studie se bevindinge blyk "Thomson's Rule" te ondersteun, 'n idee wat deur die Britse anatoom Arthur Thomson in die laat 1800's na vore gebring is, het Shriver gesê. Thomson "het gesê dat lang en dun neuse in droë, koue gebiede voorgekom het, terwyl kort en wye neuse in warm, vogtige gebiede voorgekom het," het Shriver gesê. Mense het hierdie reël getoets deur skedels te meet, maar niemand het die metings op lewende mense gedoen nie, het Shriver bygevoeg.

Hy het opgemerk dat natuurlike seleksie nie die enigste moontlike verklaring vir neusverskille is nie. Nog 'n verduideliking kan seksuele dimorfisme wees, met ander woorde, verskille tussen mans en vroue, het die studie gesê. Die navorsers het opgemerk dat daar verskille tussen mans se neuse en vroue s'n in hul bevindings was, byvoorbeeld, mans se neuse was gemiddeld groter as vroue se neuse.

Die bevindinge kan ook mediese implikasies hê, veral omdat mense meer oor die wêreld reis, het die studie gesê. Die navorsers het byvoorbeeld gevra of iemand met 'n nou neus 'n verhoogde risiko vir respiratoriese probleme kan hê as hy of sy in 'n warm en vogtige klimaat woon.

In toekomstige studies hoop die navorsers om ook te kyk na mense wat op hoë hoogtes woon, soos mense in die Andes, Tibet en Ethiopië, om te leer of lae atmosferiese-suurstofvlakke ook 'n rol speel in neusvorm, het die navorsers gesê.


Nuwe studie sê soogdiere kan asemhaal deur *kyknotas* hul boude?

Ek haal asem deur my neus en, wanneer ek verkoue is, my mond. Jy doen waarskynlik dieselfde. Dit werk goed en dit’s het my aan die lewe gehou vir meer as 35 jaar, so ek kan regtig’t kla. Maar wat as ons heeltemal misloop op 'n nuwe manier van asemhaal waarvan niemand ons ooit vertel het nie? Wat as ons liggame &mdash en dié van ander soogdiere soos varke en knaagdiere &mdash in staat was om deur 'n ander, maar ook bekende opening asem te haal? I’m praat natuurlik oor ons boude.

Nee, dit is nie 'n pynlik laat April Fools’ grap Wetenskaplikes van die VSA en Japan het 'n baie interessante artikel geskryf wat gebaseer is op hul eksperimente met verskeie soogdierspesies. Die navorsers sê dat terwyl dit’s nie presies die mees doeltreffende manier om suurstof in die liggaam te kry, soogdiere blyk te besit die vermoë om “asemhaal” deur hul boude. Ja, jy lees dit reg, en ek is jammer.

Soos kos deur die ingewande beweeg, word dit afgebreek en sy voedingstowwe word deur die liggaam opgeneem. Met die wete dat sommige organismes soos akwatiese loaches lug deur die ingewande kan absorbeer, wou die wetenskaplikes kyk of dieselfde vir soogdiere sou geld. Hulle het suurstof in sy gasvorm en in 'n vloeibare vorm gebruik wat gekonjugeerde perfluorkoolstof genoem word. Die verbinding is gebruik in medisyne vir 'n geruime tyd, maar dit’s toegepas op die lugweë en natuurlik nie die ingewande. Soos dit blyk, is die ingewande ook ontvanklik vir suurstof, en dit kan 'n spelwisselaar wees vir pasiënte wat in ernstige respiratoriese nood is.

Nadat hulle asemhalingsversaking kunsmatig by die diere veroorsaak het, het die navorsers óf gas óf vloeibare suurstof in hul rektum gepomp. Beide die gas- en vloeibare vorm het suurstofvlakke verhoog en gehelp met die herstel van respiratoriese versaking. Die navorsers stel voor dat hierdie bevindinge gebruik kan word om 'n enema-agtige suurstofaanvullingstelsel te skep om menselewens te red as soortgelyke resultate by mense gesien word. Dit sal veral nuttig wees in situasies waar 'n persoon’ se lugweg geblokkeer is of ernstige skade opgedoen het en nie meer genoeg suurstof vir oorlewing kan verskaf nie.

“Artificial respiratory support plays a vital role in the clinical management of respiratory failure due to severe illnesses such as pneumonia or acute respiratory distress syndrome,” Takanori Takebe, senior author of the study, said in a statement. “Although the side effects and safety need to be thoroughly evaluated in humans, our approach may offer a new paradigm to support critically ill patients with respiratory failure.”

Obviously, this entire thing would need to be tested in a wide range of scenarios before it could be deemed safe for humans, but the idea is interesting and potentially life-saving. Perhaps your butt will one day save your butt, so to speak.

Mike Wehner has reported on technology and video games for the past decade, covering breaking news and trends in VR, wearables, smartphones, and future tech.


Porous Science: How Does a Developing Chick Breathe Inside Its Egg Shell?

Inleiding
Have you ever wondered how an unborn chick breathes inside its shell? Every animal needs oxygen to live, so the chick must get air somehow! When an animal&mdashincluding a human&mdashinhales, oxygen enters its lungs and is then distributed to all the different parts of its body. The animal's metabolism converts the oxygen into energy. During this process, a waste gas called carbon dioxide is produced. To get rid of it, the carbon dioxide is carried back to the lungs, where it is collected and exhaled. So not only must the chick have a way to let oxygen in, it also must somehow let carbon dioxide out. How does it do this sealed inside an eggshell?

Agtergrond
When oxygen enters an animal's lungs, it is shuttled and distributed by the bloodstream. It is also the bloodstream that carries carbon dioxide back to the lungs to be breathed out. Animals that grow inside their mothers, like humans, get their oxygen from their directly mothers. The blood stream of the baby animal and the mother are connected via an umbilical cord, which allows the baby to collect oxygen that his or her mother breathes in as well as use the mother's lungs to expel the carbon dioxide.

How do animals, such as chickens, which develop inside an egg outside of their mothers' bodies and therefore do not have umbilical cords, take in oxygen and get rid of carbon dioxide? Bird and reptile eggs have a hard shell. Directly under the shell are two membranes. Between the membranes is a small air cell, also called an air sack, filled with oxygen. As the animal develops it uses the oxygen, which must be replenished, and it also has to release carbon dioxide. How does this happen? Well, if you examine a chicken egg carefully with a magnifying glass, you'll see that there are tiny little holes, called pores, in the shell. In this activity, we'll see how those work to let the developing chick breathe.

Materiaal
&bull Large pot or bowl
&bull Water
&bull Blue food color
&bull Liquid dishwasher detergent
&bull Teaspoon measurers
&bull Three eggs (for best results, do not use freshly laid eggs, rather, use older, commercial eggs)
&bull Tongs or large spoon
&bull Cup
&bull Plate or paper towel
&bull Optional: a sensitive scale, such as a digital kitchen scale or a triple-beam balance that can measure tenths of a gram

Voorbereiding
&bull Pour one and one half cups of water in a large pot or bowl.
&bull Add one quarter teaspoon of liquid dish detergent and one quarter teaspoon of blue food color. Mix well.

Prosedure
&bull Carefully put the three eggs in the pot with the water, dish detergent and blue food color.
&bull Make sure that the eggs are submerged in the liquid. If part of the egg is above the surface of the water, mix together liquid dish detergent and blue food color with more water in the same proportions as you did before. Add this to the pot until the eggs are submerged.
&bull Set a timer for one hour or make a note of the time.
&bull After the eggs have soaked in the liquid for at least one hour, carefully lift one of them out of the liquid using the tongs or large spoon. How does the egg look?
&bull Crack the raw egg into a cup, being careful not to damage or crush the shell much.
&bull Set the empty eggshell on a plate or paper towel.
&bull Carefully inspect the inside of the shell. Wat sien jy?
&bull Crack open the other two eggs in the same way. Look all around the inside of their shells, too. Wat sien jy? Do all of the insides of the shells look the same? Are there noticeable differences?
&bul Ekstra: Do fresh eggs and aged eggs behave similarly? Buy a dozen eggs whose expiration date is at least two weeks away. Try this activity with half of the eggs right away. Let the other six eggs age in the refrigerator for two weeks. Repeat the activity with the aged eggs. How does the data compare between the fresh and the aged eggs?
&bul Ekstra: If pores in the chicken egg's shell allow materials to cross back and forth between the inside of the egg and the outside environment, then the air inside the egg could be replaced by water, and water is heavier than air. Using a scale that can distinguish changes as small as 0.1 gram, such as a triple-beam balance or high-quality electronic kitchen scale, weigh some eggs, then have an adult help you hard-boil them and weigh the eggs again. Did the eggs change weight? If so, how did they change weight? What does this say about the ability of the chicken egg to allow water to cross its shell?

Waarnemings en resultate
Did all of the eggs have at least a few small blue dots on the inside of their shells? Were the dots mostly clustered in one or a few areas on the inside of each shell?

Directly under the chicken egg's shell are two membranes. When the eggs are laid by the mother they are warmer than the air, and as they cool the material inside the egg shrinks a little bit. This shrinkage is what pulls the two membranes apart, leaving behind the small air sack that is filled with oxygen. As the developing chick grows it uses the oxygen from the air sack and replaces it with carbon dioxide. The tiny pores in the shell allow the carbon dioxide to escape and fresh air to get in. The chicken egg has more than 7,000 pores in its shell to allow this to happen! These pores also allow water to go through the shell, which is why the dye appears as small dots on the inside of the shell, often clustered in certain areas, and why an egg after being hard-boiled would weigh slightly more than when it was raw. Also, freshly laid eggs do not allow water to penetrate as well as older, commercial eggs do, so fewer blue spots will probably be visible on the inside of fresher eggs compared with older ones.

Cleanup
Dispose of the raw eggs by pouring them down the drain. (The eggs should not be eaten because they were soaked with dishwater detergent.) Thoroughly clean any surface the raw eggs touched because they can carry salmonella.


This activity brought to you in partnership with Science Buddies


Pheromones in Humans: Myth or Reality?

Pheromones are volatile, odorous substances which are released by one animal and detected by another, causing some sort of physiological reaction. These reactions can manifest themselves in a variety of different ways: some pheromones modulate sexual activity, some affect aggression, some play roles in territory marking, and other pheromones have similarly diverse effects on the target animal. Pheromones have been demonstrated in a very large number of organisms ranging from amoebas to fish to mammals, including primates. However, the question of whether human olfactory signals exist has been a question of much debate and few definite conclusions. In this paper I will look at some possible examples of odor signaling in humans.

Mammals of all sorts use olfactory signals to indicate willingness to copulate, define territory, mark their young, and signal aggressive intent. These processes can be seen in many animals used as models for human systems, including rats, monkeys (both Old World and New World), hamsters and mice. The fact that pheromones are important biological signals in a plethora of other species indicates that the possibility of human pheromones should not be discarded lightly.

Although humans generally rate olfaction as their least important sensory modality, we still spend billions of dollars, years of our life, and a considerable amount of effort to modify the way we smell (at least in industrialized countries). These efforts typically include scrubbing with deodorant soaps and scented shampoos, applying deodorants to those parts of our bodies we feel need deodorizing, and finally applying perfumes and sprays to replace those natural odors we just discarded down the shower drain. This points out an obvious contradiction: if olfaction is considered unimportant and possibly even obsolete, why do we work so hard to change the way we smell? The first question to address is where do these odors we produce come from? Whereas animals release pheromones from their skin, urine, feces, and to some extent breath, most research on pheromones in humans indicates that the main odor-producing organ is the skin. For the purposes of this paper, the skin is what I will focus on. These odors are largely produced by the skin's apocrine sebaceous glands, which develop during puberty and are usually associated with sweat glands and tufts of hair. These glands are located everywhere on the body surface, but tend to concentrate in six areas1:

1) The axillae (underarms)

2) The nipples of both sexes2

3) The pubic, genital, and circumanal regions

4) The circumoral region and lips

5) The eyelids

6) The outer ear

The first four of these regions are generally associated with varying amounts of hair growth, which makes perfect sense, as the extremely large surface area of a tuft of hair is a very effective means of spreading an odor by evaporation. The fact that body hair and apocrine glands appear simultaneously at puberty is significant and suggests that body odor and its dispersal may be linked to sexual development. These supposedly non-functional structures, coupled with the olfactory system, would be called part of a pheromonal system in any other mammal.

The substances produced by these glands are relatively imperceptible by the human nose what we smell when we detect skin odor is not the fresh glandular secretions but rather the bacterial breakdown products of these glandular secretions. The sebaceous secretions themselves consist mostly of lipids such as squalene and other esters. When degraded by enzymes of bacteria naturally present on human skin, free fatty acids result, including those that smell hircine and are generally regarded as unpleasant. The most prominent examples of these hircine fatty acids have the general formula (CH3(CH2)nCOOH) and are called butyric acid (n=2), caproic acid (n=4), and caprylic acid (n=6).

The first studies I will discuss relate to evidence for the existence of pheromone signaling in human babies and children. The first interesting studies regarding children come from Michael Kalogerakis and Irving Bieber. They proposed a theory that olfaction is related to sexual identification in young children. Kalogerakis performed a study on young boys, two to four years of age, which strongly indicated that at some point in early childhood, a boy will begin to show an aversion to the odors of their father, and will simultaneously feel attraction to the odors of their mother. According to Bieber, this indicates a shift in sexual interest and acts as a biological trigger for the Oedipus response. Kalogerakis supports this theory with a case study of a boy named Jackie, who originally was closer to his father, but at the age of three years, three months, began to show a distinct preference for his mother's smells, especially at times right after she and Jackie's father had been having intercourse. At four years of age, Jackie would become nauseous at the smell of his father. This behaviour continued, tapering off slowly until Jackie was six, and his sexual identity had presumably been established.

Another intriguing study was carried out by Michael J. Russell of UCSF in 1976. He enlisted the help of ten recent mothers, whom he asked to wear a cotton pad in their bra for three hours before testing. Russell then tested the sleeping babies' ability to differentiate between pads worn by their own mothers and those worn by strange mothers. At the age of two days, only one of the ten babies responded to either type of pad, and he responded to both with a sucking response. At the age of two weeks, eight babies responded by sucking to a stranger's pad, and seven responded to their mother's pad. Also, one child responded only to its mother's pad. At the age of six weeks, however, things had changed. Eight babies responded to their mother's pad, one responded to a stranger's pad, and one did not react to it's mother's pad but did react with a jerk and a cry to the stranger's pad. These results may indicate either that a baby imprints on its mother's odor, or as Russell suggests, that the mother unconsciously marks her baby with a distinctive scent, a phenomenon observed in many other primates. This latter possibility is supported by the common parental observation that a child will reject their favorite blanket or stuffed animal after it has been washed, presumably because it has lost specific odors acquired in previous contacts.

A final childhood phenomenon worth mentioning is one observed by Dr. Alex Comfort. Comfort noticed that in the past three centuries, the age of onset of menstruation for girls has had a direct correlation with the amount of time that young girls spend with boys. In pre-Victorian times, menstruation began at an early age, only slightly above the average age of onset now. However, in Victorian times, when mingling between the sexes was minimized as much as possible, the average age of onset climbed a few years. In post-Victorian times, as boys and girls were allowed to mingle more freely and coeducation appeared, the average age fell once again. Admittedly, this could be due to a number of other factors, but it is Comfort's opinion that it is due to the exposure to odors of the opposite sex. In fact, this phenomenon has been documented in mice and is called the Vandenbergh effect: female mice raised alone in sterile cages have a much higher age of maturation than that of female mice raised alone in cages filled with a male mouse's bedding material. When the bedding belonged to a castrated male mouse, this effect was not observed.

There are variations in odor perception between human adult males and females. Le Magnen and Doty found that this is most evident in the case of women's acute ability to smell musk3, which are steroids, large cycloketone or lactones, often with side chains which are most likely involved with their biological specificity of action. All of these compounds are very similar to the male sex hormone testosterone (see appendix for structures). Whereas women are very sensitive (1 part in 109) to the musky odors of civetone (from the anal glands of the civet cat and used in many perfumes), exaltolide (a synthetic musk), and boar taint substance (a sexual attractant produced in the preputial glands of the boar), men are relatively insensitive (1 part in 106) to these substances. Moreover, women's sensitivity to these substances varies as a function of where they are in their menstrual cycle: during menstruation, women are no more sensitive to musks than men, but about ten days after menstruation (ovulation -- a woman's peak fertility period), women reach their maximum sensitivity. In addition, women on the pill, women who have had ovarectomies, pregnant women, and post-menopausal women are relatively insensitive to these substances. Le Magnen deduced from these results that sensitivity to musk in women is critically defendant on the levels of estrogen in the blood: during ovulation, serum estrogen is at a peak, whereas serum levels of estrogen are low during menstruation, pregnancy, in post-menopausal women, women who have had ovarectomies, and birth-control pill users. Further, it is the action of progesterone which causes nasal congestion during menstruation and pregnancy4, and might be responsible for the reduced sensitivity at these times.

Why is this relevant? Men secrete musky odorants in abundance. The -3-ol precursor of boar taint substance is found in male urine, and substances similar to testosterone, such as androstenone, are secreted in the smegma and from the apocrine glands of the underarms5 and pubic area of males. As is usually the case, bacterial action may be necessary for the release of the odorants. The fact that men's bodies secrete these substances and that women are maximally sensitive to them when they are most fertile indicates that there may be a olfactory-sexual role for these substances in human sexuality.

Indeed, a study performed by J. Richard Udry at the University of North Carolina attempted to delineate the relationship between coitus, orgasm and position in the menstrual cycle. He found that women do indeed engage in sexual intercourse about six times more frequently at about the time of ovulation, when women's sensitivity to the male musk odor is highest. In addition, the women are much more likely to have an orgasm at these times. Further, the women Udry studied women were several times less likely to have sexual intercourse or have an orgasm during and two to three days after menstruation, which is when women's sensitivity to the musky smell of men is lowest. Coupled with women's odor sensitivity, these results could indicate a possible pheromonal trigger for sexual behaviour.

There are several other effects in adult humans which might hinge on pheromones. Some of the most interesting results come from work done by Martha McClintock at Harvard. She performed a study on menstrual cycles in women who lived together in dormitories and found that when women are housed together, their menstrual cycles tend to synchronize and lengthen. She also found that the lengthening effect was attenuated in direct relation to the amount of time these women spent with men. In one woman's case, her regular cycle was six months long, but when she started seeing a man, it dropped to four and a half weeks. After she stopped seeing this man, her cycle once again lengthened. Of course, in an experiment like this, it is difficult to eliminate diet, work and sleep habits as factors, but the fact that this is such a widespread phenomenon indicates that something more basic is probably at work here. It is to be stressed that airborne odors or pheromones were not directly demonstrated in this study, but there is an identical phenomenon in mice that has been shown to be pheromonal in nature. This effect is called the Lee-Boot phenomenon, in which groups of female mice housed together experience increases and synchrony in their estrus cycles. When a female mouse is housed alone, this effect does not occur, but when a solitary female mouse is kept in a cage supplied with bedding from a cage full of female mice, the Lee-Boot effect is once again observed, indicating that the cues are chemosensory in nature. The attenuation of cycle elongation in women in response to male contact is also echoed in mice, and is called the Whitten effect. Once again this effect has been shown to be due to olfactory signals.

Michael Russell provided some more insight on the phenomenon of menstrual synchrony. A colleague of his, on reading McClintock's paper, mentioned that she too had noticed the same phenomenon among her friends, except that in every case, it was her own menstrual cycle which determined the synchronization of her friends'. Upon hearing this, Russell asked his colleague if he could use her underarm scent to help confirm and extend McClintock's findings. She consented, and proceeded to wear sterile cotton pads under her arms regularly. Russell the recruited sixteen female volunteers, each of whom came in three times a week for four months to have a liquid applied to her upper lip. One group of women had pure alcohol applied to their lips, and the other group had a mixture of alcohol and Russell's colleague's underarm scent from the previous day applied. The group which received pure alcohol did not experience changes in their menstrual cycle, but those that had the mix of alcohol and underarm scent applied showed a radical change in their cycles: The average time lag between cycles had been 9.3 days, but after four months, this had decreased to 3.4 days, and fully half the women were in exact synchrony with Russell's colleague, discounting the the aforementioned one day time lag. None of these women had ever even met Russell's colleague. McClintock's study showed that women who lived together reported menstrual synchronization, and Russell's study provided a likely mechanism: underarm scent. Another possible interpretation of this study leads to the conclusion that there may be dominant women with regard to menstrual synchrony, a phenomenon observed in many animals.

Dr. Russell provided yet another interesting result. At the same time he was performing his experiments on babies' ability to discriminate between their own mothers and strange mothers, he performed another experiment on whether young adults could discriminate between their odors and others' and between male and female odors. Twenty-nine college age students, 16 male and 13 female, were asked to wear a clean undershirt for twenty-four hours without using soap, deodorants, or perfumes. After twenty-four hours passed, the shirts were collected and put in buckets with the armpit right above a strategically placed sniffing hole. Two tests were then performed: the subjects were presented with three shirts, one theirs, one from a strange female and one from a strange male. The subjects were then asked to identify which shirt was theirs, taking as much time as needed. The subjects were then asked to identify which shirt belonged to the strange male and which shirt belonged to the strange female. The subjects generally sniffed each bucket once in succession, and then repeated the process. The results were impressive: 81% of the males and 69% of the females identified their own shirts correctly, for an average success rate of 75%, which is highly significant when compared to the chance percentage of 33%. In the second sex-identifying test, the subjects performed just as well: 81% of the males and 69% of the females were correct, for an average of 75%. Once again, this result was very significant, as chance would dictate a 50% success rate. When asked to characterize the odors of the shirts, the subjects generally said the males' shirts smelled musky and the females' shirts smelled sweet. This observation jibes well with the previous discussion of variations in odor perception.

One final effect needs to be mentioned due to large amount of research on it. There have been many studies on whether or not human vaginal secretions might contain some kind of sex pheromone (or "copulin", as one researcher calls them). Several researchers have found that human vaginal secretions contain various small (C2 to C6) fatty acids, with acetic acid predominating. Richard P. Michael found that about 30% of the women (he called them 'producers') produced a significant amount of those small fatty acids (not including acetic acid) that induce copulatory behaviour in infra-human monkeys. In addition, these "copulins" increased up until ovulation, and then decreased as menstruation approached. Michael also noted that women on birth-control pills did not show this mid-cycle increase, and had a lower overall fatty acid content. Michael theorized that these fatty acids or "copulins" were a sexual trigger in humans, but this has never been demonstrated, although the producers' secretions did increase copulatory behaviour in rhesus monkeys. When David Goldfoot's group in Wisconsin tried to confirm these results, however, they were unsuccessful.

Are pheromones in humans a myth or are they real? At this point, it is difficult to say either a definite yes or a definite no. The field is obviously very confused, and for every paper one finds that seems to demonstrate the existence of human pheromones, one can find another equally compelling study refuting their existence. In this paper I have tried to consider a few compelling bits of evidence, but it should be noted that none of these results are yet widely accepted, and no pheromone has yet been isolated and conclusively linked to a physiological effect in humans. Further, much of the work in this field is of a qualitative nature, without adequate controls or firm statistical basis.

However, some of the results mentioned above are quite compelling. McClintock's study and Russell's extension seem to strongly indicate there is some odorant that affects women's menstrual cycles. The fact that men secrete musk-like substances that women are maximally sensitive to during ovulation coupled with the finding that there is a demonstrated increase in coitus during this period is also very intriguing. "Copulins" may or may not be human sexual releasers, and they seem to stimulate copulatory behavior in monkeys, although this result has not been confirmed.

To close, I would like to propose a new way of looking at pheromones, specifically in humans. With our highly developed intellect and rich compliment of emotions, ambitions, motivations and desires, it may not be profitable to look at human pheromones the same way we look at animal pheromones. Instead of looking for odorants that cause a definite physiological response, it may behoove us to look at how possible pheromones affect our attitudes. We are not machines that blindly fall into some stereotyped behaviour in response to an odor, but we may be machines that are nudged towards a type of behaviour by pheromones in concert with our higher intellect.

1. This is an overgeneralization there are substantial differences in apocrine gland distribution and quantity between the various races. The six areas outlined here are generally found in caucasians, but blacks and Aborigines tend to have more and larger glands, with a higher number on the chest and abdomen than is found in an average caucasian. In addition, Aborigines have a much more powerful scent gland in the circumanal region. Asians, on the other hand, tend to have smaller and far fewer apocrine glands than either Caucasians or blacks, and many have none at all. In fact, only about 10% of Japanese people have any underarm odor at all, and at one point having scent glands in the underarms qualified a Japanese male for a military exemption and a free ticket to a medical center where they could receive treatment.

2. Interestingly, the mammary glands themselves are highly modified apocrine glands

3. Musk is a basic ingredient of all perfumes and colognes.

4. This phenomenon might be responsible for womens' reputed proclivity for unusual foods during pregnancy and menstruation.

5. A note about underarms: many of the authors of the references for this paper have pointed out that underarms are the ideal location for the dispersion of odors and /or pheromones. This is because 1) They are among the warmest parts of the body, and are among the first parts to perspire. 2) They are amply endowed with apocrine and sweat glands. 3) There is usually a strong growth of hair, which is a very effective means of dispersing an odor (as noted above). 4) Underarms are high on the torso and thus well-situated to disperse odors in the region of other people's noses. 5) Finally, being under the arms, armpits are protected from excessive evaporation. To release odors, the arms must be raised or in motion. Comfort speculates that underarms may even be specialized for this purpose.

1. Hopson, Janet. Scent signals: The Silent Language of Sex. New York: William Morrow and Company, 1979

2. Stoddart, D. Michael. Mammalian Odours and Pheromones. London: Edward Arnold Ltd., 1976

3. Shorey, H.H. Animal Communication by Pheromones. New York: Academic Press, 1976

4. Vandenbergh, John G. (ed). Pheromones and Reproduction in Animals. New York: Academic Press, 1983

5. Doty, Richard L. (Ed). Mammalian Olfaction, Reproductive Processes, and Behavior. New York: Academic Press, 1976

6. Theimer, Ernst T. (Ed). Fragrance Chemistry: The Science of the Sense of Smell. New York: Academic Press, 1982

7. Wells, F. V. and Marcel Billot. Perfumery Technology Art: Science: Industry. Chichester: Ellis Horwood Ltd, 1981

8. Comfort, Alex. "Likelihood of Human Pheromones." Natuur, vol. 220, pp. 432-479

9. McClintock, Martha K. "Menstrual Synchrony and Suppression." Natuur, vol. 229, pp. 244-245

10. Russell, Michael J. "Human Olfactory Communication." Natuur, vol 260, pp.520-522

11. Udry, J. Richard and Naomi M. Morris. "Distribution of Coitus in the Menstrual Cycle." Natuur, vol. 220, pp. 593-596

12. Michael, Richard P. et al. "Volatile Fatty Acids, 'Copulins', in Human Vaginal Secretions." Psigoneuro-endokrinologie, vol. 1, pp. 153-163

13. Huggins, George P and George Preti. "Volatile Constituents of Human Vaginal Secretions." American Journal of Obstetrics and Gynecology, vol. 126, pp. 129-136

14. Kalogerakis, Michael G. "The Role of Olfaction in Sexual Development." Psigosomatiese medisyne, vol. 25, pp. 420-432

15. Bieber, Irving. "Olfaction in Sexual Development and Adult Sexual Organization." American Journal of Psychotherapy, vol. 13, pp. 851-859

16. Michael, Richard P. et al. "Human Vaginal Secretions: Volatile Fatty Acid Content." Wetenskap, vol. 186, pp. 1217-1219.

www.anapsid.org/ pheromones.html

© 1994-2014 Melissa Kaplan or as otherwise noted by other authors of articles on this site


Kyk die video: Väck mej - kortfilmskräck Ej lämplig för barn (September 2022).