Inligting

Baie inleidende aanlyn bron van inligting in evolusionêre biologie

Baie inleidende aanlyn bron van inligting in evolusionêre biologie


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Ons ontvang baie vrae van leke in evolusionêre biologie op hierdie webwerf wat soms moeilik is om te beantwoord net omdat daar te veel is om te sê. Hoekom hou die mens nie aan om te ontwikkel nie? is 'n perfekte voorbeeld. Ek wil gereeld 'n paar inligting gee en 'n skakel na 'n goeie bron van inligting gee om inleidende kennis in evolusionêre biologie te kry.

Dit is duidelik dat niemand wat 'n vraag op 'n Stack -webwerf wil stel, 'n soortgelyke antwoord wil lees nieJy moet daardie boek lees!. Dit is dikwels nie regtig aangenaam om 'n boek te lees nie; dit neem tyd en die OP wat hierdie antwoord kry, sal waarskynlik net hul vraag vergeet.

Wat is die beste aanlynbronne wat 'n baie inleidende begrip in evolusionêre biologie bied?

Óf 'n geskrewe kursus van video's soos Khan Academy-video's sou doen (ek het egter nie die evolusionêre biologie-afdeling van Khan Academy gekyk nie en kan nie regtig oordeel oor hoe goed dit is nie).


Ek dink ten minste aanlyn dat die beste inleidingsbron vir evolusie die Evolution 101 -tutoriaal by die UC Berkeley se Understanding Evolution -projek is. Die webwerf is ontwerp deur sommige van die voorste evolusionêre bioloë en evolusionêre opvoeders in die land, en lewer 'n baie goeie werk met 'n basiese oorsig van hoe evolusie werk.


Biologie en mikrobiologie Graadinligting

B.S. in Biologie

Klem wat aangebied word:

Sellulêre en molekulêre biologie, ekologie, evolusiebiologie, mariene biologie en dierkunde.

B.S. in Biologie vir enkelvakonderrigbewys

Enkelvak-onderrigbewys in Biologie/Lewenswetenskappe:

Kursuswerk om vakbevoegdheid vir die Enkelvak Onderrigbewys in Biologie/Lewenswetenskappe te demonstreer.
(Vir diegene wat hoërskool Biologie-onderwysers wil wees.)

BA. in Biologie

B.S. in Mikrobiologie

Klem word aangebied:

Kliniese laboratoriumwetenskap en mikrobiologie van openbare gesondheid.

BA. in mikrobiologie

Gering in Biologie

Beklemtonings aangebied:

Klem in sellulêre en molekulêre biologie, ekologie, evolusionêre biologie, mariene biologie en plantbiologie.

Inligting oor kursusvereistes vir hierdie programme kan op vier plekke gevind word:

  1. Die kontrolelyste word hieronder geplaas. In die meeste gevalle bied die kontrolelyste die mees bruikbare en huidige weergawe van die kursusvereistes vir die verskillende grade en klempunte. Studente moet elke jaar die toepaslike kontrolelys raadpleeg.
  2. U persoonlike Graad -ouditverslag (DAR), wat u in die SDSU -webportaal kan vind. Vir studente wat hul voor- of hoofvak verklaar het, bied hierdie dokument 'n akkurate, opgedateerde opsomming van die vordering in die rigting van die hoofvak, en dit beklemtoon die uitstaande vereistes in rooi.
  3. Die SDSU Algemene Katalogus, onder Biologie. Daar word van studente verwag om die graadriglyne te volg vir die katalogusjaar waarin hulle die voorvak Biologie ingeskryf het, selfs al verander daardie riglyne later.

Hulpbronskakels

Toegang tot uitnemendheid
Vind 'n magdom skakels na die Woodrow Wilson Biologie Instituut oor Tyd, Fossiele bestudeer, Lewende organismes bestudeer, Molekulêre bewyse bestudeer, Alternatiewe metodes om evolusie te onderrig in lees, skryf, simulasie, eksperiment, dioramas, musiek, teken, speletjies, konsepkaarthulpbronne en meer.

Evolusie op die voorste linie
AAAS help wetenskapopvoeders om sleutelevolusiekonsepte aan hul studente oor te dra met 'n Project 2061-gids tot relevante hulpbronne. Aflaai Evolusie in die voorste linie: 'n verkorte gids vir die onderrig van evolusie.

The Evolution Dialogues: Science, Christianity, and the Quest for Understanding
AAAS bied 'n bron in eenvoudige taal aan wat die ontwikkeling van evolusionêre teorie beskryf van voor Darwin tot die hede, die historiese interaksie van evolusie en die Christendom, die aard van die wetenskap en Christina se benaderings tot begrip en die lewensgeskiedenis deur die evolusionêre wetenskappe. Laai 'n gratis studiegids af.

Die jaar van Darwin
Wetenskap vier die 150ste herdenking van die publikasie van Charles Darwin&rsquos Oor die oorsprong van spesies en die 200ste herdenking van die geboorte van die skrywer met 'n verskeidenheid nuusfunksies, wetenskaplike resensies en ander spesiale inhoud, alles hier versamel.

Spesiale simposia van American Institute of Biological Sciences (AIBS)
Die AIBS Spesiale Simposia bied toegang tot die simposiumprogram, werkswinkelprogram, sprekeraanbiedings en onderrighulpbronne oor die onderwerp van Illuminating Biology: an Evolutionary Perspective, Evolusie: toepassings in menslike gesondheid en bevolkings, Makro -evolusie: Evolusie bo die spesievlak, Evolusie en die omgewing/Verdediging van die leer van evolusie en nog baie meer om te verken.

BBC Science & amp Nature
Klik op die Darwin-skakel om 'n spesiale reeks programme te verken wat 200 jaar sedert die geboorte van Charles Darwin herdenk.

Evolution and the Nature of Science Institute (ENSI)
ENSI & rsquos se missie is om die onderrig van evolusie in hoërskoolbiologie -kursusse te verbeter. Laai lesse, leereenhede, argiewe en hulpbronne af oor die aard van wetenskap, evolusie, die oorsprong van lewe en genetika-DNA-materiaal. Artikels, boeke, toegang tot tydskrifartikels en 15 evolusionêre juwele: Onlangse bewyse van evolusie vanaf Natuur kan afgelaai word.

Federasie van Amerikaanse samelewings vir eksperimentele biologie (FASEB)
Onderriggereedskap en hulpbronne vir wetenskaplikes, insluitend K-12-onderriggereedskap, verklarings deur wetenskaplike samelewings en ander hulpbronne is beskikbaar.

National Academies Press (NAP)
Geskryf deur die National Academy of Sciences, Onderrig oor evolusie en die aard van wetenskap is 'n aanlynboek wat 'n goed gestruktureerde raamwerk bied vir die verstaan ​​en onderrig van evolusie. Die boek verduidelik die diversiteit en ooreenkoms onderliggend aan aard- en rsquos -organismes, hoe wetenskaplikes die kwessie van evolusie benader, die aard van die wetenskap, algemene vrae om wanopvattings en voorbeeldaktiwiteite vir studente uit die weg te ruim.

Nasionale Sentrum vir Wetenskaponderwys (NCSE)
NESCent deel evolusionêre biologie -navorsing, benewens die aanbied van hulpbronne van die NABT Evolution Symposium, Evolusie in die nuus stories, kurrikulumhulpbronne, voorbeelde van evolusie, opvoedkundige navorsing/beleid, professionele ontwikkelingsgeleenthede en meer.

National Geographic (NatGeo)
NatGeo bied die Darwin Legacy Quiz aan, 'n tienvra-vasvra oor Charles Darwin en sy buitengewone reis oor die H.M.S. Beagle.

National Science Teachers Association (NSTA)
NSTA bied hulpbronne oor die onderrig van evolusie, webskakels, boeke oor evolusie, vrae en kwessies en nuus.

Natuur
Lees Volume 457, nr. 7231 pp 807-848 van natuurinsig toegewy aan Evolusie. Gratis toegang tot die volledige teks- of PDF -formate is beskikbaar.

Oklahomans for Excellence in Science Education (OESE)
Hierdie opvoedkundige organisasie sonder winsbejag bevorder die opvoeding van die publiek oor die metodes en waardes van wetenskap en bepleit uitnemendheid in die wetenskaplike kurrikulum. Kyk na hul artikels en pamflette, sprekersburo, onderrigbronne, evolusiewebwerwe, skeppingswebwerwe, webwerwe oor verenigbaarheid met godsdiens/wetenskap en wetgewing en regering van Oklahoma en meer.

Panda&rsquos Duim
Die inhoudsopgawe neem u na 'n aansienlike aantal hulpbronne, insluitend staatswetenskapgroepe, anatomie, antwoordkreationiste, antropologie, biologie, algemene wetenskap, paleontologiese blogs en tydskrifte en PDF & rsquos, skeppingsjoernale, Darwiniana, evolusionêre berekening, medisyne, simulasies en modelle. , Fossiele databasisse en paleontologie, Regsbesluite, Oorsprong van die lewe, Pseudo-wetenskap en meer.

Darwin & rsquos Living Legacy & mdash Evolusionêre teorie 150 jaar later
'N Diepgaande verslag wat 'n fotoalbum, tydlyn, verdere lesings en verbindings met addisionele artikels insluit, soos Darwin praat: Hoe ontrou my bekruip het, Dit is soos om 'n moord te erken en A Skeptic & rsquos Tale on the Public Misunderstanding of Darwin.

Die nuutste gesig van kreasionisme in die klaskamer
'N Artikel deur Glenn Branch en Eugenie C. Scott oor kreasioniste wat godsdiensidees as wetenskaplike feit in openbare skole wil onderrig. Jy sal ook vind Tydlyn: Evolusie in die Amerikaanse klaskamer, verdere lesings en nog baie meer.

Springer Darwin Jaar 2009 Gratis Toegang
Die tuisblad vir Springer Publishing sal jou toegang gee tot alle artikels in die joernaal Evolution: Education and Outreach in 2009. Daar is ook gratis leesstukke oor toegewyde artikels en uit hul aanlyn-joernaalargief.

Begin Plaaslik: Gids tot Evolusie/Paleontologie
Hierdie maklik om te navigeer webwerf katalogiseer 'n aantal hulpbronne vir onderwysers, insluitend skakels en PDF's, terwyl dit verduidelikings bied van konsepte soos bewyse, meganismes van verandering en uitkomste.

Leer evolusie en maak dit relevant
'N Universiteit van Montana-webwerf vir die onderrig van evolusie op voorskoolse vlak oor die aard van die wetenskap, bewyse vir evolusie, evolusiewyse, menslike evolusie, oorerwing en variasie, oorsake van evolusie, spesiasie met bykomende bronne oor wanopvattings, gedrukte en aanlynbronne , en studente -opname. Maak evolusie relevant met die fokus op praktiese toepassings van evolusionêre biologie om 'n nie-kontroversiële atmosfeer in die klas te skep.

Om evolusie te verstaan: jou eenstopbron vir inligting oor evolusie
Hierdie webwerf is 'n samewerkende projek van die Universiteit van Kalifornië Museum van Paleontologie en die Nasionale Sentrum vir Wetenskap Onderwys. Verken die wetenskap en geskiedenis van evolusionêre biologie met voorbeelde van evolusie, lewensgeskiedenis op aarde, landbou, medisyne, homologie en analogie en nog baie meer.

Begrip van evolusie vir onderwysers
Hierdie UC Berkeley -webwerf bied 'n beginpunt, aard van wetenskap, evolusie 101, bewyse, relevansie van evolusie, wanopvattings, geskiedenis van evolusionêre denke, moontlike slaggate, die oorkom van padblokkades en onderrig van evolusie.

Wetenskap verstaan: hoe wetenskap werklik werk
Hierdie UC Berkeley -webwerf bied 'n prettige, toeganklike en gratis bron wat akkuraat kommunikeer wat wetenskap is en hoe dit werklik werk. Die webwerf is geïnspireer deur werk van die Understanding Evolution-projek wat die feit beklemtoon het dat baie wanopvattings oor evolusie voortspruit uit misverstande oor die aard van wetenskap.

Die hantering van antivolusionisme
'N Opstel van UC Berkeley deur Eugenie Scott wat die belangrikheid van evolusie in die kurrikulum behandel, weet waaroor u praat !, Ontlont die godsdienskwessie, bestry die gelykheidstyd/billikheidsgevoel met opsomming en verwysings.

Reis deur Tyd: 'N Hoërskool geïntegreerde wetenskapskurrikulum
Dit is 'n jaar lange kurrikulum wat in ses modules verdeel is: Cosmic Evolution, Planetary Evolution, Origin of Life, Evolution of Life, Hominid Evolution en Evolution of Technology. Individuele modules kan in dissiplinegebaseerde wetenskapskursusse gebruik word. Die kurrikulum gebruik die geleide ondersoekbenadering, bekend as die & ldquo5 E & rsquoS & rdquo uit die Biological Sciences Curriculum Study (BSCS).

Evolusionêre denke - Omvattende werwe

American Association for the Advancement of Science (AAAS)
Die AAAS-perskamer spreek Evolusie op die voorste linie aan met verskeie skakels na Resources, Evolution in the News en AAAS-nuus met betrekking tot evolusie as 'n wetenskap.

Die groot prentjie oor evolusie
Die Wellcome Trust-webwerf bied eksklusiewe aanlynartikels oor die toepassing van evolusie, uitsterwingsgebeure, belastingtaksonomie, die krag van gebed met onderwysers se hulpbronne en studenteaktiwiteit. Skakels is beskikbaar na Darwin 200 en daardeur na die Tree of Life, The art of Darwin en meer.

Burgers vir Wetenskap
Dit is 'n netwerk van voetsoolvlakorganisasies wat toegewy is aan die beskerming en bevordering van wetenskaponderrig. Die volgende staats- en plaaslike organisasies is verbind: AL, DC, NM, CO, FL, GA, IA, KS, MI, MN, NE, OH, OK, PA, SC, TX en WI.

Darwin Digital Library of Evolution
Gebaseer by die American Museum of Natural History (AMNH), is die doel van hierdie onderneming om die volledige literatuur van evolusie aanlyn beskikbaar te stel om die 17de eeu tot die hede in te sluit en omsluit die geskiedenis van evolusie as 'n wetenskaplike teorie met diep wortels en breë kulturele gevolge.

Darwiniana en evolusie
Die opstel in die wetenskap is 'n kunsvorm sowel as 'n manier om idees oor te dra. Diegene wat belangstel in evolusie of natuurgeskiedenis, kan veelvuldige skakels vind na die essays van Gould, Zimmer, Dawkins, Mayr, Simpson, Dobzhansky, Miller, Ruse, Forsdyke en vele ander skrywers en ontdek wat vroeëre generasies wetenskaplikes eens oor evolusie gedink het.

Die debat oor evolusie
Die Pew-forum oor godsdiens en openbare lewe bied 'n Oorsig: Die konflik tussen godsdiens en evolusie wat 'n geskiedenis van landmerk-evolusiegevalle in die VSA, Darwin-prestasies, 'n evolusietydlyn, godsdienstige groepe-beskouings, godsdienstige verskille oor evolusie, die gevegte oor Darwin-staat vir staat en nog baie meer bied.

Evolution Education Institute (EEI)
Lesbeplan toegang tot onderrig oor evolusie en die aard van die wetenskap.

Evolution Library Gereelde&rsquos
Van PBS af vind u die algemeenste vrae oor evolusie, waaronder The Basics, waarvandaan ons kom, waarheen ons gaan, hoe ons weet, wat dit beteken om te ontwikkel, 'n kwessie van tyd, Darwin, waarom dit belangrik is en evolusie op die proef.

Evolusiehulpbronne van die Nasionale Akademies
Hierdie herontwerpte webwerf is 'n versameling boeke, verslae, verklarings, referate en artikels oor evolusie. Die webwerf organiseer materiaal vir opvoeders en prokureurs, maar almal wat belangstel in hierdie kwessies, moet die webwerf nuttig en toeganklik vind.

Evolusie Geselekteerde Referate en Kommentaar
'n Webwerf georganiseer deur D.R. Forsdyke wat die historiese ontwikkeling van die idee van evolusie met 'n oorsig aanbied, geselekteerde referate oor variasie, oorerflikheid, fenotipiese (natuurlike) seleksie/isolasie en reproduktiewe (fisiologiese) seleksie/isolasie. Veelvuldige skakels na aansienlike historiese skakels, insluitend definisies van evolusionêre terme wat gebruik word.

Harvard Universiteit Departement Molekulêre en Sellulêre Biologie
Vind biologiese skakels na algemene evolusiehulpbronne, tydskrifte, sagteware, akademiese departemente en laboratoriums, organisasies, museums en uitstallings, versamelings, molekulêre evolusie, filogenetika, sistematika en taksonomie en meer.


Smithsonian se program vir menslike oorsprong
Die webwerf beskik oor 'n verskeidenheid nuttige hulpmiddels onder die Onderwys- en Hulpbronne-afdelings: 'n aflaaibare Opvoedergids na die uitstallingsaal vir klasuitstappies skakels na menslike evolusie lesplanne 'n privaat besprekingsforum vir onderwysers 'n menslike evolusie woordelys 'n afdeling oor "Wat is warm in Menslike oorsprong? " sodat jy tred kan hou met die jongste ontdekkings en 'n inleiding tot menslike evolusie.

TalkOrigins -argief
Hierdie webwerf-oorsig gee jou 'n omvattende blik op die onderwerpe van evolusie, skeppingsleer, anti-evolusionisme, biologie en die lewende wêreld, fossiele en paleontologie, menslike evolusie, geologie, kompleksiteit, fisika, sterrekunde, kosmologie, godsdiens en filosofie, sosiale kwessies en Geskiedenisboeke en meer.

Stemme vir evolusie
Hierdie is 'n publikasie van die Nasionale Sentrum vir Wetenskaponderwys wat in elektroniese vorm geplaas is met toestemming deur Don Lindsay. Deel een: Regsagtergrond, Deel twee: Wetenskaplike organisasies, Deel drie: Godsdienstige organisasies, Deel vier: Opvoedkundige organisasies en Deel vyf: Burgerlike vryheidsorganisasies.

Evolusionêre Denkers- Histories

Alfred Russel Wallace

Alfred Wallace en die oorsprong van spesies
Hierdie gevallestudie/aanbieding in navraag-styl, geskryf deur Ami Friedman, fokus op die verhaal van Wallace en beklemtoon sy middelklas-agtergrond, sy loopbaan as versamelaar en die waarnemings en ervaring wat tot sy eie insigte gelei het.

Die Alfred Russel Wallace Page
Onderhou deur 'n professor en wetenskapbibliotekaris aan die Wes-Kentucky Universiteit, is die webwerf gewy aan die viering van die lewe en werk van hierdie Engelse natuurkundige, evolusionis en sosiale kritici.

Evolusionêre klassieke
Hierdie bladsy bevat skakels na twee klassieke artikels wat deur Wallace geskryf is: On The Law, wat die bekendstelling van nuwe spesies en die neiging van variëteite gereguleer het

Charles Darwin

Volledige werk van Charles Darwin Online
Hierdie webwerf bevat volledige publikasies van Darwin en rsquos, baie handgeskrewe manuskripte en die grootste Darwin -bibliografie en manuskripkatalogus wat ooit gepubliseer is. Gratis mp3 -aflaaie is beskikbaar.

Evolusionêre Klassieke
Hierdie bladsy bevat skakels na drie klassieke artikels wat deur Darwin geskryf is: Die oorsprong van spesies, Die afkoms van die mens en Seleksie in verband met seks en Die reis van die brak.

Verborge fasette van Darwin
Hierdie bladsy is afkomstig van Natural History, the Online Museum & rsquos Findings en nadenke uit die Natural History & rsquos feitevinder Annie Gottlieb oor Darwin. Daar is ook 'n verband met die Evolution of Sociality 101 met 'n bespreking van familie -seleksie.

Die Huxley-lêer
'n Webwerf opgedra aan Darwin & rsquos & ldquobulldog, & rdquo Thomas Henry Huxley, president van die Royal Society. Rollees af na verskeie skakels met inligting.

Portrette en aanhalings
Historiese sienings oor spesies en spesies van Henry W. Bates, Charles Darwin, Ronald Fisher, Sir Francis Galton, Jean Baptiste Lamarck, Gerardo Lamas, Ernst Mayr, Fritz Muller, Vladimir Nabokov, Tomas Pyrcz, Edward B. Poulton, Michael Singer, Dick Vane-Wright en Alfred Russel Wallace.

Die Victoriaanse Web
Hierdie webwerf bevat inligting oor die literatuur, geskiedenis en kultuur in die era van Victoria. Kry inligting oor G. Cuvier, Erasmus Darwin, T.H. Huxley, J.B. Lamarck, Charles Lyell, Richard Owen, William Paley, A.R. Wallace en baie ander Men of Science het op die webwerf verskyn.

Evolusionêre multimedia

Darwin & rsquos Geskenke
Lees die uitgawe van Desember 2008 van DIE LANCET aanlyn. Die uitgawe bevat artikels oor Darwin & rsquos Fantastic Voyage, The Origin of Species, Art and Evolution, Evolution: medicine & rsquos most base science, Darwin & rsquos charm, Epigenetics in evolution and disease en nog baie meer.

Darwin: Die Genius van Evolusie
'N BBC-program vir vier radioprogramme wat Darwin en rsquos se lewe en werk heroorweeg, met Melvyn Bragg wat interaksie het met die Darwin-biograaf Jim More, die genetikus Steve Jones, die Cambridge-genoot David Norman en die assistent-bibliotekaris van Cambridge, Colin Higgins. Baie verwante skakels na Darwin Online, Down House, Natural History Museum en meer.

Evolusie 101
Hierdie webwerf plaas 'n reeks podcasts deur Zachary Moore, Ph.D met bykomende hulpbronne vir opvoeders en die lekegemeenskap.

Evolusie -video
Alan Leshner, uitvoerende hoof van AAAS, en onderwysers van Dover, Pennsylvania, bespreek die belangrikheid van onderrig in evolusie.

Evolusie: konstante verandering en algemene drade
HHMI bied die 2005 Vakansielesings oor Wetenskap aan met Sean B. Carroll, PhD en David M. Kingsley, Ph.D. Die DVD is gratis beskikbaar op aanvraag saam met klaskameraktiwiteite oor evolusie.

Evolusie: Fossiele, gene en muistelle
HHMI bied die toonaangewende evolusie-opvoeder Ken Miller aan wat die kontroversie rondom die onderrig van evolusie bespreek en redes waarom &ldquointelligente ontwerp&rdquo nie wetenskaplik is nie. Die DVD is gratis beskikbaar op aanvraag en kan aanlyn bekyk word.

MERLOT Multimedia -opvoedkundige navorsing vir leer en aanlynonderrig
Hierdie skakel verbind u met honderd vier en dertig bronne oor evolusie. Hulpbronne kan animasies, gevallestudies, versamelings, oefening en oefening, leerobjekbewaarplekke, lesingaanbiedings, aanlynkursusse, oop joernaalartikels, oop handboeke, verwysingsmateriaal, vasvra/toets, simulasie-tutoriale, werkswinkel en opleidingsmateriaal wees.

National Evolutionary Synthesis Center (NESCent)
NESCent en Understanding Evolution werk saam om 'n maandelikse Evolution in die News -verhale en podcasts aan te bied, tesame met skakels na agtergrondliteratuur en klaskamerbronne.

Evolusie
PBS bied die Evolution-projek & rsquos agt-uur televisie minireeks, 'n ko-produksie van die WGBH / NOVA Science Unit. Kyk na al agt video's: Darwin, Verandering, Uitwissing, Oorlewing, Seks, Mense en Godsdiens plus Onderrig van Evolusie-gevallestudies en aanlynlesse vir studente.

Geloof en rede
Hierdie uur lange dokumentêr handel oor die interaksie tussen wetenskap en godsdiens, histories en vandag. Die webwerf bevat afdelings oor geskiedenis, evolusie, genetika, kosmologie, doel, tegnologie en die toekoms.

NOVA
NOVA bied aan Oordeelsdag: Intelligente ontwerp op die proef die onstuimigheid in Dover, Pennsylvania vas te vang in een van die jongste gevegte oor die onderrig van evolusie in openbare skole.

Die Richard Dawkins-stigting vir rede en wetenskap
Die Stigting stel die volgende video's beskikbaar om te sien: The Four Horseman-Hour 1 en Hour 2, Lesings oor Neo-Darwinisme, Seksverhoudingsteorie en Seksuele Seleksie, Richard Dawkins praat oor Darwin en sy besoek aan die Galapagos, 'n onderhoud met die biskop van Oxford

National Geographic Channel UK
Professor Richard Dawkins oor Darwin. Ses kort video’s waar Dawkins sy sienings aanspreek.

Podcasts vir wetenskap en samelewing
Wetenskap en Samelewing bied weekliks onderhoude aan met toonaangewende en baanbrekende navorsers, toonaangewende bestuurders en senior regeringsamptenare wat in-diepte dekking van kernareas bied. Kyk na evolusie, biodiversiteit en paleontologie.

Science & amp the City (S & ampC)
S & ampC lewer elke Vrydag 'n nuwe podcast met onderhoud, gesprekke en lesings deur bekende wetenskaplikes en skrywers. Daar is 'n spesiale afdeling ter viering van Darwin 2009.

Menslike evolusie - Webwerwe en multimedia

Australopithecus afarensis (Lucy)
'N Webwerf georganiseer deur Terri Winson van die Kutztown -universiteit met inligting oor die ontdekking en betekenis van Lucy.

Vroeë Hominin -evolusie: 'n oorsig van die Australopithecines en Verwante geslagte
'n Webwerf geskep en onderhou deur Dr. Dennis O&rsquoNeil van Palomar College as 'n tutoriaal oor die onderwerpe van ontdekking en ontleding van Vroeë Hominins. Daar is blokkiesraaisels, flitskaarte, verwante internetwerwe, Woordelys van Terme, Tabel van Vroeë Hominins, Webekspedisies en toeganklikheidinligting vir gestremde gebruikers.

Die eSkeleton -projek
'n Webwerf gewy aan die studie van menslike en primaatvergelykende anatomie. Kyk na die bene van beide menslike en nie-menslike primate wat wissel van die gorilla tot die klein muislemurs.

Die evolusie van moraliteit
Hierdie webwerf het ten doel om moraliteit in 'n evolusionêre konteks te profileer en ondersteuning te bied vir onderrig daaroor in 'n standaard inleidende biologiekursus. Hoofafdelings handel oor: waarom die onderwerp belangrik is 'n handboek-styl wetenskaplike oorsig boekresensies en klaskamerhulpbronne, insluitend 'n beeldbank en klaskameraanbiedings in beide lesing- en navraagmodus.

Hominied Evolusie
'n Universiteit van Glasgow / Hunterian Museum & Art Gallery webwerf wat agtergrondinligting verskaf, Pre 5 miljoen jaar gelede, Australopithecus, eerste mense en moderne mense oor hominied evolusie.

Op soek na wat ons mens maak
Die Smithsonian Institution Human Origins -program wat The Hall of Human Ancestors bevat, What & rsquos Hot in Paleoanthropology, FAQ & rsquos, Summary of Human Origins en 'n hulpbron om vrae aan hul navorsers te stel.

Die Instituut vir Menslike Oorsprong
Die Instituut doen, interpreteer en publiseer wetenskaplike navorsing oor die menslike loopbaan. Volg Lucy & rsquos Story en skakels na die werk van Donald Johanson.

Oor mens word
Die Institute of Human Origin & rsquos bied hierdie interaktiewe dokumentêr aan wat die verhaal van ons oorsprong vertel. Die verskaffing van bewyse, anatomie, afstammelinge en kultuur deur vier miljoen jaar van menslike evolusie met Donald Johanson. Luister in Engels, Spaans of Italiaans.

Die Leakey-stigting
'n Lid-ondersteunde organisasie wat verbind is tot navorsing met betrekking tot menslike oorsprong. Vind inligting oor die Leakey -familie.

TalkOrigins -argief oor fossielhominiede
Hierdie webwerf is die produk van The TalkOrigins Foundation, 'n nie -winsgewende korporasie in Texas wat die argief huisves, wat 'n oorsig gee van die studie van menslike evolusie en van die aanvaarde fossielbewyse. Dit bevat ook 'n omvattende behandeling van kreasionistiese aansprake oor menslike evolusie.


'N Inleidende biologiekursus op digitale tegnologie wat ontwerp is vir ingenieurswese en ander nie-lewenswetenskappe STEM hoofvakke

Louise S. Mead, BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824.

BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan

Departement Integrerende Biologie, Michigan State University, East Lansing, Michigan

Program in Ekologie, Evolusionêre Biologie en Gedrag, Michigan State University, East Lansing, Michigan

BEACON-sentrum vir die studie van evolusie in aksie, Michigan State University, East Lansing, Michigan

Program in Ekologie, Evolusionêre Biologie en Gedrag, Michigan State University, East Lansing, Michigan

BEACON-sentrum vir die studie van evolusie in aksie, Michigan State University, East Lansing, Michigan

Program in ekologie, evolusionêre biologie en gedrag, Michigan State University, East Lansing, Michigan

Lyman Briggs College, Michigan State University, East Lansing, Michigan

Departement Filosofie, Michigan State University, East Lansing, Michigan

Departement Rekenaarwetenskap en Ingenieurswese, Michigan State University, East Lansing, Michigan

BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan

Departement Integratiewe Biologie, Michigan State University, East Lansing, Michigan

Program in ekologie, evolusionêre biologie en gedrag, Michigan State University, East Lansing, Michigan

Lyman Briggs College, Michigan State University, East Lansing, Michigan

Departement Entomologie, Michigan State University, East Lansing, Michigan

BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan

Departement Integratiewe Biologie, Michigan State University, East Lansing, Michigan

Program in Ekologie, Evolusionêre Biologie en Gedrag, Michigan State University, East Lansing, Michigan

Louise S. Mead, BEACON-sentrum vir die studie van evolusie in aksie, Michigan State University, East Lansing, MI 48824.

Abstrak

STEM -onderwyshervorming beklemtoon die belangrikheid van 'n omvattende begrip van die grondbeginsels van wetenskap en die ontwikkeling van wetenskaplike en ingenieurswese praktyke. As sodanig moet baie ingenieurstudente 'n kernset kursusse voltooi, insluitend biologie, maar hierdie kursus is dikwels ontwerp vir hoofvakke in die lewenswetenskappe. Een oplossing vir hierdie wanverhouding is om 'n inleidende biologiekursus te skep wat gerig is op nie-biologiese STEM-hoofvakke, wat studente deur middel van 'n rekenkundige lens aan biologie bekendstel. Avida-ED is 'n sagteware platform vir digitale evolusie waarin populasies van digitale organismes werklike-nie gesimuleerde-evolusionêre verandering ondergaan, waardeur evolusie lewendig word deur sy waarneming in aksie. Die integrasie van Avida-ED bied 'n unieke en nuwe benadering om ingenieurstudente by biologiese konsepte binne 'n rekenaaromgewing te betrek, wat hulle in staat stel om wetenskap en ingenieurspraktyke in 'n outentieke navorsingservaring uit te oefen. Die ontwerp van hierdie een-semester kursus, "Integrative Biology: From DNA to Populations", insluitend die inlywing van 'n digitale evolusielaboratorium, skep 'n manier vir rekenaarwetenskap- en ingenieursstudente om met biologie te skakel binne 'n bekende en interessante konteks.


Verken die biologie agter die komplekse kwessies waaroor u in die nuus lees

Om komplekse aangeleenthede in die huidige samelewing behoorlik te kan hanteer, benodig ons dikwels basiese kennis van biologie. Enige oorweging van kwessies soos genetiese determinisme, kloning, genetiese ingenieurswese, die stryd teen veroudering, eugenetika, kunsmatige seleksie of intelligensie-oorerwing vereis 'n begrip van biologie wat ons dalk nie almal het nie.

Hierdie aanlyn biologiekursus kan help. Jy sal 'n basiese inleiding tot die biologie agter groot kwessies kry - deur lesse en onderhoude met kundiges te gebruik - sodat jy die implikasies daarvan vir die velde van die sosiale wetenskappe en geesteswetenskappe kan verstaan.

0:10 Slaan oor na 0 minute en 10 sekondes. Waarom word ons ouer? Wat is die rol van gene in ons gedrag? Is hiërargie 'n kulturele eienskap of is daar biologiese basisse? Altruïsme en samewerking bestaan ​​in ander spesies sonder ons kultuur? Sal ons die mense van die toekoms kan ontwerp? Om 'n konstruktiewe bespreking oor hierdie vrae te hê, moet u ongetwyfeld basiese kennis van biologie hê. Dit is wat die verskil sal maak tussen 'n mening hê en kriteria hê. Hallo, ek is Jaume Bertranpetit, professor in biologie aan die Pompeu Fabra Universiteit.

0:54 Slaan oor na 0 minute en 54 sekondes Selfs as 'post-waarheid' gekies word in die 2016-jaar, sal ons in hierdie kursus die teenoorgestelde volg: hoe 'n wetenskaplike en biologiese basis ons kan help om te verstaan ​​hoe biologie belangrik is vandag, in wat ons is en in wat ons doen en hoe biotegnologieë in die toekoms kan ontwikkel. 'n Wye reeks dissiplines bestudeer die menslike toestand vanuit 'n baie wye verskeidenheid sienings. Maar het u al ooit gedink dat ons aan die einde lewende wesens is en dat hierdie toestand fundamenteel kan wees vir die interpretasie van fasette van menslike morfologie, fisiologie, maar ook baie aspekte van gedrag wat selde oorweeg word?

1:38 Slaan oor na 1 minuut en 38 sekondes In watter mate het die feit dat ons produkte van 'n evolusionêre proses is, 'n voetspoor in ons entiteit gehad? En ons, as organiese wesens, tot watter mate kan ons onsself verstaan ​​onder 'n "eenvoudige" biologiese basis?

1:55 Gaan na 1 minuut en 55 sekondes Biologie is dalk 'n ou dissipline, maar die krag en sukses daarvan kom uit die sameloop van twee onlangse gebeurtenisse: 1- toe ons 'n visie van die organismes op molekulêre vlak kry, waarin dit is moontlik om die mees basiese meganismes te verstaan ​​wat die bestaan ​​van komplekse lewende wesens ondersteun. Een van die mees fassinerende revolusies was die erkenning van die rol van DNA as die chemiese basis van oorerwing.

2:26 Slaan oor na 2 minute en 26 sekondes en, 2- wanneer ons 'n evolusionêre lewensbeskouing gehad het, wat, soos in 'n bekende aanhaling gestel word: Evolusie verduidelik nie net HOE dinge is nie, maar ook WAAROM dit is soos dit is . Kom ons maak 'n oefening. Kom ons kyk na die punte wat direkte biologiese implikasies van die nuus van 'n enkele dag het. Wil u hierdie onderwerpe regtig verstaan? Voel jy nie dat jy baie onderwerpe beter moet ken voordat jy 'n werklike en betroubare oordeel daaroor kan hê nie? Teken in op hierdie kursus. Kennis oor biologie is noodsaaklik om te dink watter soort toekoms op ons wag, wat beslis gedryf sal word deur ons vermoë om die genetiese stelsels, insluitend ons eie, te verstaan ​​en te verander.


Algemene oorsigte

Definisies van kognisie wissel, soos bespreek in Shettleworth 2010, maar 'n tipiese definisie beskou kognitiewe prosesse as die vorming of gebruik van verstandelike voorstellings, soos 'n kognitiewe kaart, wat slegs indirek in gedrag manifesteer. Breër definisies van kognisie omvat alle prosesse onderliggend aan die verkryging, behoud en gebruik van inligting uit die omgewing en sal dus perseptuele prosesse insluit. A number of overlapping subfields address cognitive evolution: comparative psychology, neuroecology, comparative cognition, cognitive ecology, and evolutionary anthropology, and, depending on the preferred definition, sensory ecology and much of behavioral ecology would also be relevant. Although a more restrictive definition has much to recommend it, here a fairly broad view of cognition is taken, following current practice. Sherry 2006 provides an overview of neuroecology, while Shettleworth 2010 is a comprehensive overview of animal cognition from an evolutionary standpoint, as well as a review of the history of the field. Dukas 1998, Dukas and Ratcliffe 2009, and Heyes and Huber 2000 are edited volumes that give an idea of the breadth of the subject, while Wynne 2004 is an insightful book that is accessible to the nonspecialist. Deary 2001 concisely covers human intelligence, a useful backdrop to considerations of animal cognition.

Deary, I. J. 2001. Intelligence: A very short introduction. Very Short Introductions 39. Oxford: Oxford Univ. Druk.

A short volume on human intelligence that, unusually, actually defines the slippery concept of intelligence. Covers issues such as the evidence for general intelligence in humans, and the links between brain size and intelligence.

Dukas, R., ed. 1998. Cognitive ecology: The evolutionary ecology of information processing and decision making. Chicago: Univ. of Chicago Press.

A very useful edited, multiauthor volume that helped establish the field of cognitive ecology, bringing together a variety of research programs on the study of the fitness consequences of cognition.

Dukas, R., and J. M. Ratcliffe, eds. 2009. Cognitive ecology II. Chicago: Univ. of Chicago Press.

Follow-up volume with a new set of contributions, demonstrating the maturation and expansion of the field since the 1998 edition.

Heyes, C., and L. Huber, eds. 2000. The evolution of cognition. Vienna Series in Theoretical Biology. Cambridge, MA: MIT Press.

A multiauthored edited volume with contributions from many of the leaders in the field, bringing together several points of view to provide an integrative overview and covering genetic evolution and cultural evolution, as well as developmental influences on cognition.

Sherry, D. F. 2006. Neuroecology. Jaarlikse hersiening van sielkunde 57:167–197.

Neuroecology, the study of how evolution shapes cognition and the brain, links behavioral and evolutionary ecology to cognitive neuroscience. Sherry reviews the field, comparative methods, controversies, and several research foci, including birdsong, sex differences in brood parasites, and avian food storing. Comprehensive overview in a single paper. Available online for purchase or by subscription.

Shettleworth, S. J. 2010. Cognition, evolution, and behaviour. 2d ed. Oxford: Oxford Univ. Druk.

Provides excellent and broad coverage of the field, with an emphasis on bringing together work from psychology and biology: special attention is given to explaining the specialized terminology of these fields. First edition was published in 1998.

Wynne, C. D. L. 2004. Do animals think? Princeton, NJ: Princeton Univ. Druk.

Written for nonspecialists, Wynne takes selected research programs as case studies to examine the nature and variety of animal minds, and to discuss how this should influence how we think about animals. Wynne has also written a useful 2001 undergraduate textbook on animal cognition, titled Animal Cognition: The Mental Lives of Animals (New York: Palgrave).

Users without a subscription are not able to see the full content on this page. Please subscribe or login.


Emergence, hierarchy and top-down causation in evolutionary biology

The concept of emergence and the related notion of ‘downward causation’ have arisen in numerous branches of science, and have also been extensively discussed in philosophy. Here, I examine emergence and downward causation in relation to evolutionary biology. I focus on the old, but ongoing discussion in evolutionary biology over the ‘levels of selection’ question: which level(s) of the biological hierarchy natural selection acts at, e.g. the gene, individual, group or species level? The concept of emergence has arisen in the levels-of-selection literature as a putative way of distinguishing between ‘true’ selection at a higher level from cases where selection acts solely at the lower level but has effects that percolate up the biological hierarchy, generating the voorkoms of higher level selection. At first blush, this problem seems to share a common structure with debates about emergence in other areas, but closer examination shows that it turns on issues that are sui generis to biology.

1. Inleiding

The concept of emergence has featured in many branches of science, including physics, complex systems and neuroscience. There is also a large philosophical literature on the topic [1]. I want to discuss emergence, and the closely related topics of hierarchical structure and ‘top-down’ causation, in relation to evolutionary biology. My concern is not with the whole of evolutionary biology, but rather with one particular debate within it—the ongoing discussion over ‘levels of selection’ [2–4]. I start by offering a brief characterization of the levels-of-selection question in biology. I then outline a central conceptual problem within the levels-of-selection debate, and explore how the notions of emergent property and top-down causation have arisen in the biological literature as possible solutions to the problem.

My central claim is this. At first blush, the issue within evolutionary biology that I discuss verskyn to be a special case of the more general issue of emergence/top-down causation, examined in the abstract by authors like Jaegwon Kim [5]. However, closer examination reveals that this is not actually the case. In fact, the biological issue is largely sui generis, and turns on matters that are specific to evolutionary science, despite the appearance of a common structure with debates in other disciplines. This claim, if correct, dovetails nicely with an argument made in a different context by Larry Sklar [6], about the relation between philosophical issues as they arise within science and as they are treated in the abstract.

Some preliminary remarks about the concepts of emergence and top-down causation will help set the stage. Many branches of science, including biology, study systems that are hierarchically organized, i.e. smaller ‘parts’ are contained within larger ‘wholes’. Think for example of electrons within atoms, neurons within brains, planets within solar systems or cells within an organism. It is a standard thought, among philosophers and scientists, that the properties of the parts usually determine those of the whole. Despite this, it is often argued that when the pattern of determination is extremely complex, the whole may exhibit ‘emergent properties’ that could not have been predicted from knowledge of the constituent parts. This emergence is sometimes thought to help explain why the principles and laws of science such as biology and psychology cannot be reduced to micro-physical principles and laws. But how exactly the concept of emergence should be understood, and its precise significance, is a controversial issue [1].

‘Top-down’ (or ‘downward’) causation is the idea that in a hierarchically structured system, causal influence may on occasion run from whole to part, i.e. down the hierarchy. This is quite a counterintuitive notion ordinarily we are accustomed to think that neurons causally influence the brains they are in, and that electrons causally influence the atoms they are in, for example, but not vice versa. Indeed, many philosophers of science have doubted whether top-down causation is possible. However, this is presumably an empirical issue and in any case, it seems indisputable that the behaviour of a part may causally depend on its relationship to, or position within, the whole. So in this fairly minimal sense, downward causation presumably does occur in nature. But as with emergence, how exactly the concept should be understood, and what exactly it shows, are matters of ongoing controversy among philosophers of science.

2. The levels-of-selection question

The levels-of-selection question asks which level or levels of the biological hierarchy does natural selection act. The question is a fundamental one for evolutionary biology, for it arises directly from the underlying logic of Darwinism. As Darwin himself realized, the principle of natural selection is entirely abstract: it tells us that if a population of ‘entities’ exhibits variation, differential reproduction and heredity, then its composition will change over time, as the ‘fittest’ variants gradually replace the less fit. In most discussions, including Darwin's own, these entities are taken to be individual organisms, but, in theory at least, there are other possibilities. For the biological world is hierarchically organized with organisms somewhere in the middle. Each organism is composed of organs and tissues, which are themselves made up of cells each cell contains a number of organelles and a cell nucleus each nucleus contains a number of chromosomes and on each chromosome lies a number of genes. Above the level of the organism, we find entities such as kin groups, colonies, demes, species and whole ecosystems.

How exactly the biological hierarchy should be characterized, that is, which levels should be recognized and why, is a non-trivial issue. But one point is clear from the outset. Entities at various hierarchical levels, above and below that of the organism, can satisfy the conditions required for evolution by natural selection. For just as organisms gives rise to other organisms by reproduction, so cells give rise to other cells by cell division, genes to other genes by DNA replication, groups to other groups by fission (among other ways), species to other species by speciation, and so on. Thus the Darwinian concept of fitness, i.e. expected number of offspring, applies to entities of each of these types. So, in principle, these entities could form populations that evolve by natural selection.

Historically, the levels-of-selection question has been closely linked with the problem of altruism. In biology, altruism refers to behaviours that reduce the fitness of the organism performing them, but boost the fitness of others, e.g. sharing food. Selection at the level of the individual organism should disfavour altruism, for altruists suffer a fitness disadvantage relative to their selfish counterparts, yet such behaviour is quite common in nature. One possible explanation, first canvassed by Darwin himself, is that altruism may have evolved by selection at higher levels of organization, for example, the group or colony level. Groups containing a high proportion of altruists might have a selective advantage over groups containing mostly selfish types, thus allowing altruism to prosper. The idea that group selection might explain the evolution of altruism is still discussed today.

For many years, the idea of selection operating at levels other than that of the individual organism was seen as a theoretical curiosity, unlikely to be important in practice. Recently, there has been a significant change of opinion among (some) biologists, and a resurgence of interest in hierarchical or ‘multi-level’ approaches to natural selection. This is for two main reasons. Firstly, theorists concerned with explaining the ‘major evolutionary transitions’ have realized that selection acting at multiple hierarchical levels (multi-level selection) may have played a major role [3,4,7–9]. Such transitions occur when a number of lower level units, capable of surviving and reproducing alone, aggregate into a single larger unit, which eventually becomes a new higher level individual. Many such transitions have occurred in the history of life (e.g. from single-celled to multi-celled organisms), giving rise to the modern biological hierarchy. For an evolutionary transition to occur, it is generally necessary for selection at the higher level to ‘trump’ selection at the lower level, to ensure that the lower level units work for the good of the whole. From this perspective, we see that multi-level selection, far from being a theoretical curiosity, is in fact implicated in some of the most important evolutionary events on the Earth.

The second reason behind the resurgence of multi-level selection stems from a theoretical advance made by George Price in the 1970s, whose full significance has only recently been fully appreciated [10]. Price showed how the overall evolutionary change, in a population with hierarchical structure, could be partitioned into a number of components, one corresponding to each level of the hierarchy. Thus, for example, if the two levels are individuals and groups, then applying Price's technique allows us to express the total evolutionary change as the sum of two components—one reflecting selection acting on individuals within groups and the other reflecting selection acting between the groups themselves. (For an ‘altruistic’ trait these two components will be opposite in sign, i.e. group selection will favour the trait, individual selection will oppose it.) As well as being a useful modelling technique, Price's analysis also provides a key conceptual insight: natural selection, at any hierarchical level, requires a covariance between some trait and the fitness of entities at that level. Moreover, the component of the total change owing to selection at any level is directly proportional to the magnitude of the trait-fitness covariance at that level. I have provided a fuller account of Price's analysis of multi-level selection in previous work [2], as have other authors [3].

3. Emergence and the levels of selection

What has all this got to do with emergence and top-down causation? Interestingly, these notions have arisen in both the biological and the philosophical literature on levels of selection. In some ways this is not surprising, as the concept of emergence is potentially applicable wherever there is hierarchical structure, and as we have seen, the hierarchical nature of the biotic world is part of what gives rise to the levels-of-selection question. Moreover, causation is also central to the levels question. Darwinian explanations are usually understood as causal: to attribute the spread of a trait to natural selection is to say what veroorsaak it to spread. (This causal dimension to Darwinian explanations is not always made explicit, but it is generally intended.) If this is right, then in a multi-level scenario, where natural selection is operating at two (or more) levels of the biological hierarchy, it follows that two distinct causal processes are occurring at different hierarchical levels in principle, the higher level process could impinge on entities at the lower level. And this is precisely the sort of situation for which the notion of top-down causation was tailored. So it is easy to see, in general terms, why emergence and top-down causation should feature in discussions of the levels of selection in biology.

To make this more concrete, consider a well-known distinction introduced by Williams in his famous book Adaptation and natural selection [11]. Williams argued that group adaptations must be sharply distinguished from what he called ‘fortuitous group benefits’. A group adaptation is a feature of a group that benefits it, and that evolved by selection at the group level. For example, some insect colonies have a sophisticated division-of-labour among workers, which probably evolved because of the advantage it confers on the whole colony if so, this is a group adaptation. A fortuitous group benefit, by contrast, is a feature of a group that benefits it, but is not the result of group-level selection, rather it is an ‘unintended side effect’ of some other process. For example, if a particular deer herd contains deer that can run especially fast, then the average running speed of the herd will be high—higher than that of other herds. But ‘average running speed’ is not an adaptation of the deer herd. Rather, running fast is an adaptation of the individual deer within the herd there is an individual-level selection story to be told about why they evolved to run fast. The fact that the herd they live in has a high average running speed is simply a side effect of the adaptations of the individual deer. No group-level selection process need be invoked to explain this fact.

One natural thought is that Williams' distinction between group adaptation and fortuitous group benefit lines up with the distinction between emergent and non-emergent (or ‘aggregate’) properties this has been argued by a number of authors including Elizabeth Vrba [12]. Division-of-labour among the workers in an insect colony is arguably an emergent property of the whole colony, for it ‘emerges’ from the different activities and morphologies of many insects. But the average running speed of a deer herd is not like this—rather, it is a mere statistical aggregate of the running speeds of the individual deer. How exactly this emergent/aggregate distinction should be drawn, in biology and elsewhere, is a rather tricky question—for in both cases, the group property is presumably bepaal by individual properties. But if we grant that the distinction makes sense, and that we have at least a rough idea of how to apply it, then the hypothesis that emergent/aggregate coincides with the group adaptation/fortuitous group benefit distinction can at least be entertained. The hypothesis is prima facie quite plausible, for convincing examples of biological adaptations, at any level, are usually complex traits—and a hallmark of a complex trait is precisely that it is not a simple aggregation of lower level traits, in the way that the herd's average running speed is a simple aggregation of the traits of the individual deer.

4. Causation and cross-level byproducts

Closely related to emergent properties is the issue of causation as it relates to levels of selection. To focus the issue, consider a two-level scenario, where lower level ‘particles’ are nested within higher level ‘collectives’, as shown in figure 1. This figure could represent individual organisms within social groups, or cells within multi-celled organisms, or genes within genomes, or species within ecosystems. In principle, natural selection could operate on particles within collectives, or on whole collectives, or at both levels simultaneously. Price's analysis teaches us that for selection to act at a level, there must be a trait-fitness covariance at that level. So for collective-level selection to occur, it is necessary that the fitness of a collective depends systematically on the traits of that collective. (Note that the ‘traits’ of a collective may include both aggregate properties—such as the proportion of particles of a given type it contains—or emergent properties.) But covariance is of course a statistical notion and not a causal one. If a given collective trait covaries with a collective's fitness, this mag be because of a causal influence of that trait on fitness, or it may be for some other reason. Another possibility is that the trait-fitness covariance at the collective level is a side effect, or byproduct, of natural selection acting at the lower level. If so, then there is a ‘cross-level product’ running from the particle to the collective level [2].

Figure 1. Particles nested within a collective.

This conceptualization helps us to isolate the core of the levels-of-selection problem. The key question becomes: when is a given trait-fitness covariance indicative of selection at the level in question, and when is it a byproduct of selection at some other hierarchical level? In previous work, I argue that this is the question actually at stake in many debates over the levels of selection, though they are rarely formulated in precisely this way [2]. In essence, the levels-of-selection problem is about how to determine the hierarchical level(s) at which there is a causal, rather than merely a statistical, link between traits and fitness.

To illustrate the idea of a cross-level byproduct, recall Williams' example of a herd of fleet deer. Let us elaborate somewhat on the example. Suppose there are two sorts of deer, fast and slow, and that the former are on average fitter than the latter, as they can escape predators more easily. The deer live in herds of size n. Suppose that the fitness of any individual deer depends only on its own running speed, and not on which group it lives in. Suppose that fast and slow deer are distributed among herds at random, so by chance, the proportion of fast deer (e.g.) varies from herd to herd. In this situation, there will clearly be a positive covariance between a herd's fitness (which can be defined as the total fitness of the deer within it), and the proportion of fast deer in the herd. Herds in which this proportion is high will be fitter than ones in which it is low. However, this covariance does not reflect a causal relationship of trait on fitness at the herd level rather, it is a side effect of the fact that at the individual level there is a causal link between running fast and being fit. So the causal action of natural selection is taking place at the lower level, producing effects that ‘filter up’ the biological hierarchy, leading to the voorkoms of a causal process of selection at the higher level.

One important consequence of this is that Price's equation is a potentially misleading guide to the levels of selection, if ‘selection’ is understood causally. A positive covariance between collective trait and collective fitness may reflect the causal action of natural selection at the collective level, or it may instead arise as a cross-level byproduct, in the matter described above. It is not possible to tell by inspection of Price's equation which of these possibilities obtains so the equation can at best be a partial guide to understanding the causal forces at work in multi-level selection. This point has been made in the literature by a number of authors [2,13,14] but is not widely appreciated. In part, this is because evolutionary biologists tend to slide easily from using ‘selection’ in a purely correlational and in a causal sense.

How exactly should the distinction between ‘genuine’ natural selection at level and cross-level byproducts be drawn? Some authors have suggested that emergent properties can help distinguish the two. Where the collective trait is aggregate rather than emergent, then any covariance between that trait and fitness can only be a side effect of lower level selection, on this view while if the collective trait is emergent, then it is capable of causally influencing fitness. This has been called the ‘emergent property requirement’ on genuine higher level selection [2]. The requirement has a certain plausibility, and certainly tallies with our intuitions in some cases, but it faces two problems. Firstly, as noted above, the aggregate/emergent distinction, though intuitive, is hard to characterize precisely. Secondly, it represents a substantial metaphysical thesis whose truth one would like some explanation of. However, we exactly distinguish emergent from non-emergent properties of collectives, why should it be that only the former are capable of causally influencing the fitness of a collective? Proponents of the emergent property requirement have not answered this question.

Another idea that has surfaced in this debate, though rarely made fully explicit, is that genuine collective-level selection, which cannot be reduced to selection at lower levels, is in fact impossible. (Both Vrba [12] and Eldredge [15] flirt with an argument which, if taken to its logical conclusion, would have this consequence.) On this view, enige trait-fitness covariance at the collective level can ultimately be explained from below so there kan nie be a causal link between trait and fitness at the collective level as opposed to a cross-level byproduct. One possible argument for this reductionistic conclusion is as follows.

In general, properties of collectives are likely to depend systematically on properties of their constituent particles—this is what philosophers sometimes refer to as the principle of ‘part–whole supervenience’ [5]. So any collective trait Z will be ‘realized’ by some complex of underlying particle traits the same is true of collective fitness Y. Therefore, there cannot be a direct causal influence of Z on Y. Any apparent causal link between Z and Y is actually a side effect of causal connections between the respective particle-level traits that realize Z and Y. So genuine collective-level selection, which is irreducible to causal processes acting at the particle level, is impossible it flies in the face of the determination of collective properties by particle properties. This argument is depicted graphically in figure 2. The solid arrows and dotted lines represent causation and correlation, respectively the thick vertical lines represent the relation of determination, or supervenience. Let us call this the ‘supervenience argument’ against the possibility of genuine higher level selection.

Figure 2. The supervenience argument against higher level selection.

What should we make of the supervenience argument? Clearly, it threatens to make cross-level byproducts ubiquitous, for it challenges the very idea of higher level causation in a hierarchical system. (The argument is analogous to Jaegwon Kim's well-known argument against ‘non-reductive physicalism’ in philosophy of mind [5].) However, note that the supervenience argument, if correct, shows only that a trait-fitness covariance at the higher level must be a byproduct of some lower level causal processes or other, but not necessarily lower level keuse. For the underlying particle characters on which Y supervenes will not necessarily be particle fitnesses they may be characters of any sort. So it does not follow from the supervenience argument that the trait-fitness covariance at the collective level is reducible to particle-level selection.

However, reducibility to lower level selection is what matters for evolutionary biologists. For the crucial question is: should we invoke the notion of Darwinian adaptation at the collective level, or only at the particle level? Should we recognize collectives as adapted units, with properties fashioned by natural selection, or not? In the context of the levels-of-selection debate, this is the issue that matters. So the mere fact, if it is one, that there will always be some lower level (‘micro-causal’) explanation of a given higher level trait-fitness covariance is not to the point what we are interested in is whether or not there is a lower level selektief explanation. For this latter question is what determines the legitimacy, or otherwise, of treating the collectives as adapted units in their own right, rather than as groups of adapted individuals. And this is precisely the bone of contention in the levels-of-selection controversy.

An example may help illustrate the importance of the distinction in question. Suppose that a process of colony-level selection is operating in a species of social insects, favouring those colonies in which workers' reproduction is suppressed. So there is a positive covariance between a colony's fitness and its success at suppressing worker reproduction. Plausibly, this is a case of genuine (or irreducible) higher level selection. The covariance in question is not a side effect of selection at a lower level, as in Williams' deer herd example. So there is a prima facie case for regarding the colonies themselves as adapted units. But, presumably, there must be sommige lower level explanation of the covariance in question: it is not a brute fact about the world. For example, perhaps suppressing worker reproduction reduces the potential for wasteful conflict among the workers, thus boosting the colony's chance of survival. Fully elaborated, this explanation would amount to a lower level explanation, in terms of individual events and processes, of why the covariance in question obtains. But it would in no way show that the covariance is a side effect of lower level keuse, so would not invalidate the idea that the colonies themselves, rather than their constituent individuals, are the adapted units.

This does not show that the supervenience argument is incorrect, but only that it is not quite to the point, given the question that evolutionary biologists are interested in. This also helps us diagnose the mistake made by proponents of the emergent property requirement on higher level selection. The appeal to emergent properties makes some sense as a way of trying to resuscitate ‘genuine’ higher level selection from the clutches of the supervenience argument. Indeed, this is a standard role played by the emergent property notion in other areas—helping to explain (supposedly) how causation at the higher level can coexist with part–whole supervenience. It is highly debatable whether emergent properties can succeed in this role, but in the biological context it does not matter. To repeat, the question we are interested in is not whether some particle-level causal processes or other bear the causal responsibility, but whether particle-level keuse bears the causal responsibility. It seems probable that these two questions have been conflated by defenders of the emergent property requirement on higher level selection.

This does not mean that the distinction between ‘emergent’ and ‘aggregate’ properties is unreal, or is of no biological importance. It may well be that the notion of an emergent property is a useful way of characterizing the distinction between a honeybee colony, for example, which bears the hallmarks of functional organization at the group level, and an aphid colony, which does not. And it may be that there is a robust correlation between the occurrence of group-level selection, and the possession by groups of emergent properties though of course, we should not ignore the possibility that lower level processes, including individual selection, may also explain the existence of emergent properties. This is an empirical question. The point I am making here is that there is no konseptuele link between a group having emergent properties, and the existence of an autonomous group-level selection process that is irreducible to lower level selection.

5. Gevolgtrekking

What does this leave us? The upshot, I think, is that the debate over causation, hierarchy and emergence, in this particular area of evolutionary biology, raises issues that are fairly sui generis to biology, despite the appearance of a common structure with issues discussed in philosophy of mind, metaphysics and other branches of science. One interesting question is whether this moral generalizes. Are the issues surrounding emergence and top-down causation, in, say, neuroscience, importantly different from the similar-sounding issues that arise in complex systems theory or in statistical mechanics, for example? There is a perennial temptation in philosophy of science to see a common structure in debates with widely different subject matters, and thus to seek an abstract characterization of the issues, applicable across the board. This can be illuminating, but it can also blind us to the subtleties and idiosyncrasies of particular cases.

In a recent book on the philosophy of physics, Larry Sklar [6] makes an interesting observation about the relationship between philosophical issues as they arise in actual science, and as they are treated in the abstract. Sklar notes that many issues in philosophy of science, such as the opposition between ‘realists’ who think that science is trying to describe the ultimate structure of reality and ‘instrumentalists’ who think that science is just about predictive accuracy, tend to be debated in highly general terms, without reference to a scientific context. However, similar debates have frequently arisen binne science, e.g. among quantum physicists. Sklar argues that by treating the issues in the abstract, philosophers risk losing sight of the specific reasons, internal to a particular science, which have motivated scientists to endorse realist or instrumentalist viewpoints of the case in question. Sklar's observation is an important one and also applies to the issues in evolutionary biology discussed above the problem I have discussed of how to understand causation in relation to multi-level selection kan be characterized in a way that makes salient the analogy with debates about emergence, reductionism and causation in metaphysics and philosophy of mind, but doing so threatens to obscure the biological issues that are at stake.


Miscellaneous Collections

Biology lessons from the Khan Academy. Includes full courses with text, videos, images, and test questions. You can also find many practice questions for preparation for standardized tests. Non-commercial reuse of materials is allowed if you provide the following attribution: All Khan Academy content is available for free at www.khanacademy.org.

Field of human red blood cells

The Exploratorium's digital assets are protected by copyright and trademark laws, and are the property of the Exploratorium. Digital assets are defined as content from different media (e.g., photographs, video, text, audio, Web pages, etc.) preserved in digital form.

Unless otherwise stated, you may print or download Exploratorium digital assets for informational, educational, and other noncommercial purposes provided you include the following copyright notice adjacent to the resource, with the URL as a live link in digital environments:

BioInteractive is a website produced by the non-profit Howard Hughes Medical Institute (HHMI). It hosts different forms of multimedia to teach students the excitement of understanding science.


University Libraries

Gebruik die Papers application from Mekentosj to search Scopus? Papers should prompt you for the Scopus ID (36298) when you do a Scopus search. If it doesn't, or if you need to change it, it go to Preferences, Plugins, Search Engines. Also, Papers can also be configured to use our off campus authentication system (EZproxy), so you might want to add http://ezproxy.lib.uconn.edu/login?url=%@ in the "library proxy" box under "Preferences, Sources".

Need help using Scopus? Try these tutorials or ask a librarian.

  • The out-of-scope citations (e.g., articles on plate tectonics or astrophysics) from certain MEDLINE journals, primarily general science and chemistry journals, for which the life sciences articles are indexed for MEDLINE
  • Citations that precede the date that a journal was selected for MEDLINE indexing
  • Some additional life science journals that submit full text to PubMedCentral(c) and receive a qualitative review by NLM.
  • Akwakultuur
  • Aquatic Organisms
  • Aquatic Pollution
  • Brackish Water Environments
  • Climatology
  • Bewaring
  • Environmental Quality
  • Fish and Fisheries
  • Freshwater Environments
  • Voorspelling
  • Geochemistry
  • Geochronology
  • Geologie
  • Geophysics
  • Glaciology
  • Hydrogeology and Hydrology
  • Limnology
  • Marine Biotechnology
  • Marine, freshwater and brackish water environments
  • Meteorology
  • Mineralogy and Crystallography
  • Natural Hazards
  • Oseanografie
  • Paleontology
  • Petrology
  • Pollution (air and water)
  • Remote Sensing
  • Seismology
  • Stratigraphy
  • Upper Atmosphere
  • Weer

Policy for Use of Licensed Electronic Resources

Use of the databases linked from these pages is governed by the UConn Library's Use of Licensed Electronic Resources Policy.


BS Concentration in Neuroscience

  • 44 Required credit hours in biological sciences
  • 38 Required credit hours inmath, chemistry, and physics
  • 82 Total required credit hours

&mdashRequired BIO, CHE, MTH, and PHY courses same as required for BA and for BS (broad-based degree)

and for this concentration:

&mdashRequired laboratory courses in biological sciences (choose four total)

and three of the following:

  • BIO 315 Fundamentals of Biological Chemistry Lab
  • BIO 329 Genetics Lab
  • BIO 332 Advanced Molecular Biology Lab
  • BIO 370 Developmental Biology Lab
  • BIO 400 Bioinformatics (Lab)
  • BIO 420 Cytogenetics Lab
  • APY 346 Comparative Primate Anatomy Lab

&mdashElective courses: Make additional choices from the following courses to reach the 44 credit minimum requirement for the Bachelor of Science degree.


Kyk die video: Sveučilišni profesor biologije: Teorija evolucije ne može objasniti čuda mimikrije i kamuflaže (Oktober 2022).