Inligting

7.2: DNS Onderwyser se Voorbereidingsnotas - Biologie

7.2: DNS Onderwyser se Voorbereidingsnotas - Biologie


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Oorsig

In hierdie aktiwiteit onttrek studente DNA uit hul wangselle en bring die stappe in die prosedure in verband met die eienskappe van selle en biologiese molekules. Studente leer sleutelkonsepte oor DNS-funksie tydens die intervalle wat vir die ekstraksieprosedure vereis word. Studente se begrip van DNS-struktuur, funksie en replikasie word verder ontwikkel deur bykomende ontledings- en besprekingsvrae en praktiese modellering van DNS-replikasie.

As skoolbeleide nie jou studente toelaat om DNS uit hul wangselle te onttrek nie, beveel ons die aanwysings vir die onttrekking van DNS uit aarbeie aan (beskikbaar by https://sites.google.com/site/biolog...ical-molecules) of die DNA-ekstraksie-virtuele laboratorium (beskikbaar by http://learn.genetics.utah.edu/conte...bs/extraction/), wat een van hulle saam met ons analise- en besprekingsaktiwiteit "DNA-struktuur, -funksie en replikasie" gebruik kan word (beskikbaar by http://serendip.brynmawr.edu/exchange/ bioactivities/DNA).

Leerdoelwitte

In ooreenstemming met die Next Generation Science Standards:

  • Studente sal begrip kry van die Dissiplinêre Kern-idees:
    • LS1.A, Struktuur en Funksie, "Alle selle bevat genetiese inligting in die vorm van DNS-molekules. Gene is streke in die DNS wat die instruksies bevat wat kodeer vir die vorming van proteïene."
    • LS3.A, Oorerwing van eienskappe, "Elke chromosoom bestaan ​​uit 'n enkele baie lang DNS-molekule, en elke geen op die chromosoom is 'n spesifieke segment van daardie DNS. Die instruksies vir die vorming van spesies se kenmerke word in DNS gedra."
  • Studente sal betrokke raak by die Wetenskaplike Praktyke, verduidelikings konstrueer en modelle gebruik.
  • Hierdie aktiwiteit bied die geleentheid om die Dwarssny-konsep, "struktuur en funksie" te bespreek.
  • Hierdie aktiwiteit help om studente voor te berei vir twee prestasieverwagtinge:
    • HS-LS1-1, "Konstrueer 'n verduideliking gebaseer op bewyse vir hoe die struktuur van DNA die struktuur van proteïene bepaal wat die noodsaaklike funksies van die lewe verrig ..."
    • MS-LS3-1, "Ontwikkel en gebruik 'n model om te beskryf waarom strukturele veranderinge aan gene wat op chromosome geleë is, proteïene kan beïnvloed en kan lei tot skadelike, voordelige of neutrale effekte op die struktuur en funksie van die organisme."

Spesifieke leerdoelwitte

  • DNA dra die genetiese inligting in alle soorte lewende organismes. Elke DNA-molekule bevat veelvuldige gene.
  • DNS bestaan ​​uit twee stringe nukleotiede wat saamgewikkel is in 'n spiraal wat 'n dubbelheliks genoem word. Elke nukleotied is saamgestel uit 'n fosfaatgroep, 'n suikermolekule en een van vier verskillende stikstofbasisse: adenien (A), timien (T), guanien (G) of sitosien (C). Die fosfaat- en suikerdele van die nukleotiede vorm die ruggraat van elke string in die DNS-dubbelheliks.
  • Die basisse strek na die middel van die dubbelheliks, en elke basis in een string is gepas met 'n komplementêre basis in die ander string. In ooreenstemming met die basisparingsreëls, pare A met T en G met C.
  • 'n Polimeer bestaan ​​uit baie herhalings van 'n kleiner molekule ('n monomeer). DNA is 'n polimeer van nukleotiede.
  • Proteïene is polimere van aminosure. Die spesifieke volgorde van aminosure bepaal die struktuur en funksie van die proteïen. Proteïene het baie belangrike funksies in selle, insluitend proteïenensieme wat chemiese reaksies kataliseer, vervoerproteïene en strukturele proteïene.
  • Die volgorde van nukleotiede in 'n geen gee die instruksies vir die volgorde van aminosure in 'n proteïen. 'n Verskil in die volgorde van nukleotiede in 'n geen kan lei tot 'n ander volgorde van aminosure wat die struktuur en funksie van die proteïen kan verander. Dit kan verskillende eienskappe tot gevolg hê, bv. albinisme teenoor normale vel- en haarkleur.
  • DNS-replikasie produseer twee nuwe DNS-molekules wat dieselfde volgorde van nukleotiede as die oorspronklike DNS-molekule het, so elkeen van die nuwe DNS-molekules dra dieselfde genetiese inligting as die oorspronklike DNS-molekule. Tydens DNS-replikasie word die twee stringe van die oorspronklike DNS-dubbelheliks geskei en elke ou string word as 'n sjabloon gebruik om 'n nuwe bypassende DNS-string te vorm. Die ensiem DNA-polimerase voeg nukleotiede een-op-'n-keer by, deur die basisparingsreëls te gebruik om elke nukleotied in die ou DNA-string met 'n komplementêre nukleotied in die nuwe DNA-string te pas.
  • In eukariotiese selle bestaan ​​elke chromosoom uit DNA wat om proteïene toegedraai is. Die chromosome is vervat in die kern binne 'n kernmembraan.

Toerusting en voorrade vir DNA-ekstraksie

  • Sportdrank soos Gatorade (10 ml per student)
  • Vloeibare skottelgoedseep (0,25 ml per student)
  • Vleisversagter ('n knippie per student)
  • 70-95% isopropyl of etielalkohol (4 ml per student)
  • Toutjie vir halssnoer (2,5 voet per student)
  • 3 ons. dixie koppies (1 per student)
  • Bakkie ys, vrieskas of yskas (1)
  • Bad vir vuil proefbuise (1)
  • Bleikmiddel (1% bleikmiddeloplossing om proefbuise te steriliseer)
  • Klein proefbuisies (buisies moet 'n minimum van 15 ml hou) (1 per student)
  • Proefbuisrak (1 per groep)
  • 0,5-1,5 ml fliptop mikrosentrifugeerbuise (1 per student)
  • Oordragpipette (1 per groep)
  • Handskoene (1 per student)

Voorbereidings vir DNA-ekstraksie

Voor klas:

  1. Sny tou in stukke van 2,5 voet.
  2. Sit 'n emmer ys op om alkohol koud te hou of sit alkohol in die vrieskas/yskas tot benodig.
  3. Skink 'n klein koppie sportdrankie vir elke student.

Tydens klas:

  1. Deel koppies sportdrankie aan elke student uit. Dit is belangrik dat elke student die drankie vir ten minste 'n minuut kragtig in sy of haar mond spoel om genoeg wangselle te verkry.
  2. Deel 'n proefbuisrak met een proefbuis per student aan elke groep uit. Deel een handskoen aan elke student uit. Gooi die seep en vleissagter uit. Alternatiewelik kan jy 'n stasie iewers in die klaskamer hê waar die studente toegang tot die seep, ens.
  3. Na minstens 10 minute (wanneer die studente die "DNA-struktuur"-gedeelte van die studente-uitdeelstuk voltooi het), gee die koue alkohol en pipette uit.
  4. Na 10 minute (wanneer die studente die "DNA-replikasie"-gedeelte van die studente-uitdeelstuk voltooi het), versprei een mikrosentrifugeerbuis en stukkie tou aan elke student.
  5. Help studente se oordrag van hul DNA na hul mikrosentrifugebuisies met behulp van die pipette. Dit help om die DNS om die punt van die pipet te draai om 'n groot prop bymekaar te kry voordat die DNS in die pipet ingesuig word. Waarsku die studente om sag te wees terwyl hulle pipet, sodat hulle nie die brose DNA-stringe beskadig nie. Onervare pipette het 'n neiging om lug in die vloeistof te blaas en die DNS verskeie kere in die proefbuis op te suig en uit te dryf voordat dit na die mikrosentrifugebuis oorgeplaas word; dit is geneig om die DNA-stringe te breek.
  6. Trek 'n paar handskoene aan en haal die proefbuisrakke by die studente. Gooi proefbuisinhoud in die wasbak uit, spoel die proefbuise uit en plaas dit vir 10 minute in 'n bad met 1% bleikmiddeloplossing om dit vir die volgende klas te steriliseer. (Jy wil dalk hierdie werk aan 'n student toewys).
  7. Verwyder proefbuise uit bleikwater en keer dit om in die rakke om vir die volgende klas droog te word.
  8. Plaas die alkohol terug in die ysemmer of vrieskas/yskas.

Voorrade en voorbereiding vir modellering van DNA-replikasie

  • Nukleotiedstukke ('n Sjabloon vir die maak van genoeg nukleotiedstukke vir nege studente of pare studente word op die laaste bladsy van hierdie Onderwyservoorbereidingsnotas verskaf. Nadat jy genoeg kopieë gefotostateer het vir die aantal studente wat jy het, kan jy:
    • Knip elke bladsy voor in nege dele en voorsien jou studente van 'n skêr sowel as kleefband of
    • Werf studentehelpers om elke bladsy voor te sny om 9 pakkies van 10 nukleotiede elk te maak.)
  • Band

Onderrigvoorstelle en biologie-agtergrond

Voordat studente met die aktiwiteit begin, moet hulle 'n basiese begrip hê van die struktuur en funksie van proteïene. 'n Voorgestelde volgorde van leeraktiwiteite om studente aan proteïene en DNA bekend te stel, word verskaf in "Verstaan ​​die funksies van proteïene en DNA" (beskikbaar by http://serendip.brynmawr.edu/exchang...ities/proteins).

Bladsye 1-3 van die Studente-uitdeelstuk sal waarskynlik 'n laboratoriumperiode van 50 minute vereis. Bladsye 4-6 sal waarskynlik minder as 'n volle addisionele tydperk van 50 minute benodig, veral as jou studente vertroud is met DNA-struktuur en replikasie. In die Studente-uitdeelstuk dui vetgedrukte getalle vrae aan wat die studente moet beantwoord.

As jy die Word-weergawe van die Studente-uitdeelstuk gebruik om veranderinge vir jou studente aan te bring, gaan asseblief die PDF-weergawe na om seker te maak dat die syfers en formatering in die Word-weergawe korrek op jou rekenaar vertoon word.

'n Sleutel met antwoorde op die meeste van die vrae in hierdie aktiwiteit is beskikbaar as die sleutel vir die analise- en besprekingsaktiwiteit "DNA Struktuur, Funksie en Replikasie"; jy kan hierdie sleutel by Ingrid Waldron ([email protected]) aanvra. Die volgende paragrawe verskaf bykomende onderrigvoorstelle en agtergrondinligting – sommige vir insluiting in jou klasbesprekings en sommige om jou te voorsien van die relevante agtergronde wat nuttig kan wees vir jou begrip en/of om op studentevrae te reageer.

Om studente te help om die geheelbeeld te verstaan ​​en hul begrip van belangrike beginsels en woordeskat wat met DNS verband hou, te konsolideer, beveel ons aan dat jy hierdie aktiwiteit saam met 'n gewysigde weergawe van storiebord gebruik. In hierdie benadering gebruik studente die DNS-storiebord (getoon op die laaste bladsy van hierdie Onderwyservoorbereidingsnotas) soos volg:

  • Terwyl studente vraag 1 in die Studente-uitdeelstuk beantwoord, benoem en verduidelik hulle die figure in die DNS-storiebord. (As jou studente meer steierwerk benodig, wil jy dalk meer spesifieke vrae byvoeg.)
  • Soos studente hul begrip van DNS in die daaropvolgende bladsye van die Studente-uitdeelstuk verhoog, verander hulle hul DNS-storiebord.
  • Na voltooiing van die aktiwiteit wat in die Studente-uitdeelstuk aangebied word, kry studente 'n nuwe kopie van die DNS-storiebord. Studente benoem en verduidelik die figure om op te som wat hulle van DNS-struktuur, funksie en replikasie weet (sonder om na hul vroeëre storiebord of die Studente-uitdeelstuk te kyk). Hierna moet studente spoedige terugvoer hê sodat hulle die akkuraatheid en volledigheid van hul storieborde kan verbeter; jy kan dit bereik in 'n klasbespreking waar studente hul storieborde vergelyk. Hierdie tipe aktiewe herroeping met terugvoer help om studente se begrip en behoud van die konsepte en woordeskat wat tydens die aktiwiteit geleer is, te konsolideer.

Die proteases in die vleissagmaker verteer nie net histone nie (die proteïene wat DNS omvou), maar breek ook sel-ensieme af wat die DNS kan verteer. Die hoë soutkonsentrasie (van die sportdrank en vleissagmaker) is ook belangrik aangesien DNS-molekules negatief gelaai is en die sout die afstoting onder die negatief gelaaide stringe DNS neutraliseer en die DNS laat saamklonter.

Tydens die wag van minstens 10 minute nadat die studente ensieme bygevoeg het, moet studente die kort inleiding tot DNS-struktuur en -funksie op bladsy 2 van die Studente-uitdeelstuk hersien en vraag 1 beantwoord. Hierdie vraag bied die geleentheid om studente se begrip wat DNS dra, te versterk. die genetiese inligting in alle tipes lewende organismes. Jy kan ook daarop wys dat die struktuur en funksie van DNS in alle soorte organismes soortgelyk is.

Koue alkohol help om die DNA-molekules te presipiteer deur die temperatuur te verlaag en die oplossing van DNS onmiddellik onder die alkohollaag te dehidreer. Jy sal dalk aan jou studente wil verduidelik hoe alkohol help om die DNS te presipiteer. DNS is oplosbaar in water omdat die negatief gelaaide fosfaatgroepe langs die suiker-fosfaat-ruggraat na die gedeeltelike negatiewe lading van die O-atome in die polêre watermolekules aangetrek word. Etanol is ook polêr, maar het 'n groot nie-polêre komponent, wat DNS minder oplosbaar in etanol maak.

Tydens die wag van minstens 10 minute nadat die alkohol bygevoeg is, moet die studente die materiaal bo-aan bladsy 3 lees en vraag 2 beantwoord. Terwyl vraag 1 gene bespreek wat deurslaggewend is vir selfunksie en oorlewing, verwys vraag 2 na 'n voorbeeld van 'n geen wat nie deurslaggewend is vir selfunksie en oorlewing nie en slegs in sekere spesifieke selle aktief is.

Die alleel vir albinisme kodeer vir 'n gebrekkige ensiem vir die vervaardiging van melanien, 'n donker pigment wat velsel se DNA beskerm teen die skadelike effekte van die son se UV-straling. In die mees algemene vorm van albinisme lei die gebrekkige ensiem vir die vervaardiging van melanien nie net tot albino-vel- en haarkleur nie, maar beïnvloed dit ook die voorkoms en funksie van die oë. Jy wil dalk vir jou studente daarop wys dat velkleur ook deur ander gene (bv. gene wat beïnvloed hoeveel melanien gemaak word) en omgewingsfaktore (bv. sonblootstelling wat tot verhoogde produksie van melanien kan lei) beïnvloed word. Verdere inligting oor albinisme, asook inligting oor hemofilie, is beskikbaar in "Understanding the Functions of Proteins and DNA" (http://serendip.brynmawr.edu/exchang...ities/proteins).

Nadat u vir ten minste 10 minute gewag het, wanneer u studente gereed is om die onttrekte DNS te ondersoek, beklemtoon dat hulle eers na die onversteurde proefbuis moet kyk; hulle behoort 'n deurskynende laag te sien waar die DNS tussen die oorspronklike mengsel en alkohol geleë is, en hulle kan stringe DNS sien wat tot in die alkohollaag strek; soms het die stringe DNA borrels op hulle.

Om studente se begrip te verseker, bevat die Studente-uitdeelstuk vir hierdie aktiwiteit verskeie vereenvoudigings. Byvoorbeeld, die definisie van 'n geen naby die bokant van bladsy 2 in die Studente-uitdeelstuk ignoreer veelvuldige kompleksiteite, insluitend die feite dat baie gene kodeer vir meer as een polipeptied en baie gene kodeer vir RNA wat verskillende funksies as mRNA het.

DNA-struktuur en -funksie

In die bespreking van die figuur bo-aan bladsy 4 van die Studente-uitdeelstuk, wil jy dalk jou studente daaraan herinner dat die soliede lyne kovalente bindings voorstel en die stippellyne waterstofbindings voorstel.

Die bokssin naby die onderkant van bladsy 4 van die Studente-uitdeelstuk bied belangrike agtergrond om studente te help verstaan ​​waarom akkurate replikasie van die volgorde van nukleotiede in DNS so belangrik is, soos verder bespreek in vraag 8. Jy wil dalk vir jou studente die volgende wys geïllustreerde vloeidiagram weergawe van hierdie inligting.

Die beeld wat vir die gevoude proteïen in hierdie weergawe van die vloeidiagram gewys word, verskil van die beeld van die proteïen op bladsy 2 van die Studente-uitdeelstuk. Die beeld wat op bladsy 2 gewys word, is meer akkuraat (http://www.ebi.ac.uk/thornton-srv/da...mber=1.14.18.1); die tweede en derde beelde in hierdie vloeidiagram is ontwerp om voor te stel hoe 'n polipeptied in 'n funksionele proteïen vou.

DNA replikasie

Vir vrae 8-10, nadat studente hul aanvanklike antwoorde geskryf het en jy 'n klasbespreking van hierdie antwoorde gehad het, wil jy dalk studente die geleentheid bied om hersiene weergawes van hul antwoorde op een of meer van hierdie vrae voor te berei ten einde te konsolideer akkurate begrip. Vir vraag 9, as jou studente nie vertroud is met die gebruik van die agtervoegsel "ase" om 'n ensiem aan te dui nie, sal jy daardie inligting moet verskaf.

Om te verseker dat studente begrip van die basiese proses van DNA-replikasie, ignoreer hierdie aktiwiteit baie van die kompleksiteite wat in werklike DNA-replikasie waargeneem word. Vir bykomende inligting oor DNA en DNA replikasie, sien:

  • Nuttige hulpbronne beskikbaar by http://learn.genetics.utah.edu/content/molecules/ en http://www.hhmi.org/biointeractive/teacher-guide-dna
  • 'n Kollege handboek vir biologie hoofvakke soos Campbell, Reece, et al., Biologie; Freeman et al., Biologiese Wetenskap; of Raven et al., Biology
  • Video's beskikbaar by http://www.hhmi.org/biointeractive/c...-structure-dna, http://www.hhmi.org/biointeractive/d...n-basic-detail en http:// www.hhmi.org/bioi nteractive/dna-replication-advanced-detail.

Een belangrike punt wat nie in die Studente-uitdeelstuk ingesluit is nie, is dat, tydens werklike DNA-replikasie, soms foute gemaak word en die verkeerde nukleotied by die nuwe DNA-string gevoeg word. DNA-polimerase kan elke nuwe dubbelheliks-DNS-string "proeflees" vir foute en terugspoor om enige foute wat dit vind reg te stel. Om 'n fout reg te stel, verwyder DNA-polimerase die verkeerd gepaarde nukleotied en vervang dit met die korrekte een. As 'n fout gemaak word en nie gevind word nie, kan die fout permanent word. Dan sal enige dogterselle dieselfde verandering in die DNA-molekule hê. Hierdie veranderinge word puntmutasies genoem omdat hulle die genetiese kode op een punt verander, dit wil sê een nukleotied. 'n Puntmutasie in 'n geen in 'n gameet wat 'n sigoot vorm, kan beduidende effekte tot gevolg hê, soos sekelselanemie. (Bykomende inligting oor sekelselanemie word verskaf in "Verstaan ​​die funksies van proteïene en DNA" (http://serendip.brynmawr.edu/exchang...ities/proteins).)

Opvolg aktiwiteite

Om studente se begrip van hoe DNA die instruksies vir proteïensintese verskaf en ons eienskappe beïnvloed verder te ontwikkel, beveel ons ons praktiese modelleringsaktiwiteit aan

"Van geen na proteïene – transkripsie en vertaling" (beskikbaar by http://serendip.brynmawr.edu/sci_edu/waldron/#trans). In hierdie praktiese aktiwiteit leer studente hoe 'n geen die instruksies verskaf om 'n proteïen te maak, en hoe gene albinisme of sekelselanemie kan veroorsaak. Eenvoudige papiermodelle word gebruik om die molekulêre prosesse van transkripsie en translasie te simuleer. Daarbenewens evalueer studente die voor- en nadele van verskillende tipes modelle wat in hierdie aktiwiteit ingesluit is. Hierdie aktiwiteit is in lyn met die Next Generation Science Standards.

Om studente te help verstaan ​​hoe chromosome tydens seldeling geskei word en hoe gene van ouers na nageslag oorgedra word, beveel ons ons praktiese modelleringsaktiwiteite aan, Mitose - Hoe elke nuwe sel 'n volledige stel gene en meiose en bevrugting kry - verstaan ​​hoe gene Is oorgeërf (beskikbaar by onderskeidelik http://serendip.brynmawr.edu/sci_edu/waldron/#mitosis en http://serendip.brynmawr.edu/sci_edu/waldron/#meiosis). Hierdie praktiese aktiwiteite is ontwerp om saam gebruik te word en beide aktiwiteite is in lyn met die Next Generation Science Standards.

Om die nodige agtergrond vir beide aktiwiteite te verskaf, begin studente deur die verwantskappe tussen chromosome, gene, allele, proteïene en fenotipiese kenmerke te hersien. Studente gebruik dan modelchromosome om die prosesse van mitose te simuleer en reageer op analise- en besprekingsvrae om hul begrip van mitose te ontwikkel. In die meiose- en bevrugtingsaktiwiteit gebruik studente modelchromosome om die prosesse van meiose en bevrugting te simuleer. As deel van hierdie modelleringsaktiwiteite volg studente die allele van drie menslike gene deur gamete na sigote. Op hierdie manier leer hulle hoe gene deur die prosesse van meiose en bevrugting van ouers na nageslag oorgedra word. Studente ontleed ook die resultate van onafhanklike assortiment en kruising om hul begrip van hoe meiose en bevrugting bydra tot genetiese en fenotipiese variasie te bevorder.

Daarbenewens vergelyk en kontrasteer studente mitose en meiose, en hulle leer hoe 'n fout in meiose kan lei tot Down-sindroom of die dood van die embrio. Korter, eenvoudiger weergawes van beide aktiwiteite is beskikbaar by http://serendip.brynmawr.edu/exchange/waldron/mitosis en http://serendip.brynmawr.edu/exchange/waldron/meiosis.

Bykomende voorstelle vir opvolgaktiwiteite word verskaf in:

  • "Molekulêre Biologie: Groot konsepte en leeraktiwiteite" (beskikbaar by http://serendip.brynmawr.edu/exchang...ivities/MolBio) en
  • "Genetika – hoofkonsepte en leeraktiwiteite" (beskikbaar by http://serendip.brynmawr.edu/exchang...neticsConcepts).

DNA Storiebord

Skryf sinne en benoem die figure om op te som wat jy weet oor die struktuur, funksie en replikasie van DNS.


7.2: DNS Onderwyser se Voorbereidingsnotas - Biologie

Dinsdag
Biologie Keystone Eksamen (No 3de of 4de)

Lab: Quizlet Module 2 Hersiening

Groot idee: Interafhanklikheid in die natuur
Ekosisteme en gemeenskappe
4.1 Klimaat
-Onderskei tussen weer en klimaat.
-Identifiseer die faktore wat klimaat beïnvloed.
4.2 Nisse en gemeenskapsinteraksies
- Definieer nis
-Beskryf die rol wat kompetisie speel in die vorming van gemeenskappe.
-Beskryf die rol wat predasie en herbivoor speel in die vorming van gemeenskappe.
-Identifiseer die drie tipes simbiotiese verwantskappe in die natuur.
4.3 Opvolging
-Beskryf hoe ekosisteme herstel van 'n versteuring
-Vergelyk opeenvolging na 'n natuurlike versteuring met opeenvolging na 'n mensveroorsaakte versteuring.
4.4 Bioom
-Beskryf en vergelyk die kenmerke van die belangrikste landbiome.
-Identifiseer die areas wat nie in 'n hoofbioom geklassifiseer is nie.
4.5 Akwatiese ekosisteem
- Identifiseer die hoofkategorieë van varswater-ekosisteme.

Gaan voort met Keystone Review Packet

H.W. Het Ch. 5 en 6 Note Shell Complete vir môre

Voltooi Hfst. 4, Hoofstuk 5 & 6 Nota Shell

Groot idee: Materie en Energie, interafhanklikheid in die natuur
Die Biosfeer
3.1 Wat is ekologie
-Beskryf die studie van ekologie?
-Verduidelik hoe biotiese en abiotiese faktore 'n ekosisteem beïnvloed?
-Beskryf die metodes wat gebruik word om ekologie te bestudeer.
3.2 Energie, produsente en verbruikers
-Definieer primêre produsente
-Beskryf hoe verbruikers energie en voedingstowwe verkry
3.3 Energievloei in ekosisteme
-Spoor die vloei van energie deur lewende sisteme na.
-Identifiseer die drie tipes ekologiese piramides
3.4 Siklusse van materie
-Beskryf hoe materie siklusse tussen die lewende en nie-lewende dele van 'n ekosisteem.
-Beskryf hoe water deur die biosfeer siklus.
-Verduidelik waarom voedingstowwe belangrik is in lewende sisteme.
-Beskryf hoe die beskikbaarheid van voedingstowwe die produktiwiteit van ekosisteme beïnvloed.

Evolution Study Island verskyn Dinsdag

Bioomkaart en Hfst. 6 Pakkie Woensdag

Evolusie Studie Eiland Due

Bioomkaart en Hfst. 6 Pakkie Verskuldig - môre betaalbaar

Werk aan Hoofstuk Hersieningsvrae - betaal môre

Korrekte hersieningsvrae en hersiening vir toets

Voltooi Hfst. 4 Let op Shell vir Huiswerk vir Maandag

Groot idee: Materie en Energie, interafhanklikheid in die natuur

-Beskryf die studie van ekologie?

-Verduidelik hoe biotiese en abiotiese faktore 'n ekosisteem beïnvloed?

-Beskryf die metodes wat gebruik word om ekologie te bestudeer.

3.2 Energie, produsente en verbruikers

-Beskryf hoe verbruikers energie en voedingstowwe verkry

3.3 Energievloei in ekosisteme

-Spoor die vloei van energie deur lewende sisteme.

-Identifiseer die drie tipes ekologiese piramides

-Beskryf hoe materie siklusse tussen die lewende en nie-lewende dele van 'n ekosisteem.

-Beskryf hoe water deur die biosfeer siklus.

-Verduidelik waarom voedingstowwe belangrik is in lewende sisteme.

-Beskryf hoe die beskikbaarheid van voedingstowwe die produktiwiteit van ekosisteme beïnvloed.

Bioomkaart en Hfst. 6 Pakkies betaalbaar - 1 Mei

Bespreek sluitsteen- en oop vrae

Werk aan Keystone Packet as 'n klas.

Bioomkaart en Hfst. 6 Pakkies betaalbaar - 1 Mei

Voedselweb - Oefen etikettering en bou jou eie

Begin werk aan Keystone Review Packet

Bioomkaart en Hfst. 6 Pakkies betaalbaar - 1 Mei

2de Bench Mark/ Wanneer klaar is werk op Evolution Study Island

Bioomkaart en Hfst. 6 Pakkies betaalbaar - 1 Mei

Groot idee: evolusie van bevolkings

-Definieer evolusie in genetiese terme

-Identifiseer die hoofbronne van genetiese variasie in 'n populasie

- Noem wat die aantal fenotipes vir 'n eienskap bepaal

17.2 Evolusie as genetiese verandering in bevolkings

-Verduidelik hoe natuurlike seleksie enkelgeen en poligeniese eienskappe beïnvloed.

-Verduidelik hoe verskillende faktore genetiese ewewig beïnvloed.

17.3 Die Proses van Spesiasie

-Identifiseer die tipes isolasie wat kan lei tot die vorming van nuwe spesies.

-Beskryf die huidige hipotese oor Galapagos-vinkspesievorming.

19.2 Patrone en prosesse van evolusie

-Identifiseer die prosesse wat oorlewing of uitsterwing van 'n spesie of klade beïnvloed het.

- Kontrasteer gradualisme en gepunktueerde ewewig.

-Beskryf aanpasbare bestraling en konvergente evolusie.

-Verduidelik die evolusionêre kenmerke van saam-ontwikkelende organismes.

-Verduidelik die endosimbiotiese teorie.

Resensie vir Ch. 17 en 19.2 Toets

Groot idee: evolusie van bevolkings

-Definieer evolusie in genetiese terme

-Identifiseer die hoofbronne van genetiese variasie in 'n populasie

- Noem wat die aantal fenotipes vir 'n eienskap bepaal

17.2 Evolusie as genetiese verandering in bevolkings

-Verduidelik hoe natuurlike seleksie enkelgeen en poligeniese eienskappe beïnvloed.

-Verduidelik hoe verskillende faktore genetiese ewewig beïnvloed.

17.3 Die Proses van Spesiasie

-Identifiseer die tipes isolasie wat kan lei tot die vorming van nuwe spesies.

-Beskryf die huidige hipotese oor Galapagos-vinkspesievorming.

19.2 Patrone en prosesse van evolusie

-Identifiseer die prosesse wat oorlewing of uitsterwing van 'n spesie of klade beïnvloed het.

- Kontrasteer gradualisme en gepunktueerde ewewig.

-Beskryf aanpasbare bestraling en konvergente evolusie.

-Verduidelik die evolusionêre kenmerke van saam-ontwikkelende organismes.

-Verduidelik die endosimbiotiese teorie.

Gaan voort Wat Darwin nooit geweet het nie

Voltooi Nota Pakkie vir Donderdag

Quizlet Warmup - Vocab Quiz op Vrydag

Laat doen Nota Pakkie vir Donderdag

Studie-eiland - Evolusie - teen Maandag

Laat doen Nota Pakkie vir Donderdag

Quizlet Warm Up - Vocab Quiz op Maandag

Hfst. 17 en 19.2 Toets volgende Dinsdag

Quizlet Live Review - Vocab Quiz Maandag

Hersien Vrae Bl. 504-505 #1-25, Bl. 566 12-20 - Beslis Maandag

Groot idee - Evolusie
16.1 Darwin se ontdekkingsreis
- Bespreek Darwin se bydrae tot die wetenskap
-Beskryf die drie patrone van biodiversiteit wat deur Darwin opgemerk is
16.2 Idees die gevormde Darwin se denke
- Identifiseer die gevolgtrekkings wat Hutton en Lyell gemaak het oor die Aarde se Geskiedenis
-Beskryf Lamarck se hipotese van evolusie
-Beskryf Malthus se siening van bevolkingsgroei
-Verduidelik die rol van oorgeërfde variasies in kunsmatige seleksie

16.3 Darwin bied sy geskenke aan

-Beskryf die toestande waaronder natuurlike seleksie plaasvind

-Verduidelik die beginsel van algemene afkoms

16.4 Bewyse van Evolusie

-Verduidelik hoe geologiese verspreiding van spesies verband hou met hul evolusionêre teorie

-Verduidelik hoe fossiele en die fossielrekord die afkoms van moderne spesies van antieke voorouers dokumenteer.

-Verduidelik hoe molekulêre bewyse gebruik kan word om die proses van evolusie na te spoor.

Voltooi Wat Darwin nooit geweet het nie

Hoofstuk Hersieningsvrae bl. 476-477 #1-29 - word Woensdag ingedien

Hoofstuk Hersieningsvrae bl. 476-477 - Donderdag beskikbaar

Werk aan Ch. Hersien vrae

Lees Afdeling 17.1 en 17.2 en voltooi 17.1 en 17.2 in pakkie (Vir Maandag ingedien)

Groot idee - Evolusie
16.1 Darwin se ontdekkingsreis
- Bespreek Darwin se bydrae tot die wetenskap
-Beskryf die drie patrone van biodiversiteit wat deur Darwin opgemerk is
16.2 Idees die gevormde Darwin se denke
- Identifiseer die gevolgtrekkings wat Hutton en Lyell gemaak het oor die Aarde se Geskiedenis
-Beskryf Lamarck se hipotese van evolusie
-Beskryf Malthus se siening van bevolkingsgroei
-Verduidelik die rol van oorgeërfde variasies in kunsmatige seleksie

16.3 Darwin bied sy geskenke aan

-Beskryf die toestande waaronder natuurlike seleksie plaasvind

-Verduidelik die beginsel van algemene afkoms

16.4 Bewyse van Evolusie

-Verduidelik hoe geologiese verspreiding van spesies verband hou met hul evolusionêre teorie

-Verduidelik hoe fossiele en die fossielrekord die afkoms van moderne spesies van antieke voorouers dokumenteer.

-Verduidelik hoe molekulêre bewyse gebruik kan word om die proses van evolusie na te spoor.

Lees 16.1 en 16.2 (Bl. 450 - 458), voltooi afdelinghersieningsvrae. Bl. 453 # 1,2

Begin Hoofstuk 16 Powerpoint en Notas

Korrekte Afdeling Hersieningsvrae
Werk aan 16.1 en 16.2 Pakkie

Volledige grafiek van mense wat Darwin beïnvloed het

Korrekte 16.1 en 16.2 Pakkie

Begin aantekeninge oor 16.3 en 16.4

Lees Bl. 460-473 en voltooi 16.3 en 16.4 Pakkie

Lab Pd. 1 - Wat Darwin nooit geweet het nie

Huidige artikels oor evolusie

-Verduidelik die verband tussen gene en die omgewing.

Kyk dihibriede video en voltooi werkkaart

-Verduidelik die verband tussen gene en die omgewing.

Begin met monohibriede probleme

Monohibriede-oefenwerkblad

Monohibriede vasvra op Woensdag

Korrekte Monohibriede Werkkaart

Voltooi Oefenprobleme

Monohibriede vasvra op Donderdag

Stel Dihybrids - Wolf probleem vir huiswerk bekend

Korrigeer monohibriede probleme

Oefen meer monohibriede probleme

Voltooi Coin Toss Baby Lab

-Verduidelik die verband tussen gene en die omgewing.

Genetiese Ingenieurs Navorsing

DNA-misdaadoplossing-videogreep

Genetiese Ingenieurswese Navorsing voltooi

-Som die proses van DNS-vingerafdrukke op en verduidelik die gebruike daarvan.

Toets oor transkripsie/vertaling

Lees Biotegnologie Artikel en Beantwoord Vrae - beskikbaar Woensdag

Versamel biotegnologie-artikelvrae

Genetiese Ingenieurswese Navorsingsaktiwiteit

Groot idee: groei, ontwikkeling en voortplanting

Groot idees: inligting en oorerwing, sellulêre basis van lewe

DNA
1. Kontrasteer RNA en DNA.
2. Verduidelik die proses van transkripsie.

Ribosome en proteïensintese
1. Identifiseer die genetiese kode en verduidelik hoe dit gelees word.
2 Som die proses van vertaling op.
Mutasies
1. Definieer mutasies en beskryf die verskillende tipes mutasies.
2. Beskryf die uitwerking wat mutasies op gene kan hê.

Voltooi aantekeninge indien nodig

13.1 en 13.2 Pakkies wat Môre betaalbaar is

Transkripsie/Vertaalvasvra Woensdag

Proteïensintese Werkkaart

Transkripsie/Vertaalvasvra môre

DNA Vocab Quiz op Donderdag

Resensie vir Ch. 13 Toets Maandag

Groot idee: groei, ontwikkeling en voortplanting

Groot idees: inligting en oorerwing, sellulêre basis van lewe

DNA
1. Kontrasteer RNA en DNA.
2. Verduidelik die proses van transkripsie.

Ribosome en proteïensintese
1. Identifiseer die genetiese kode en verduidelik hoe dit gelees word.
2 Som die proses van vertaling op.
Mutasies
1. Definieer mutasies en beskryf die verskillende tipes mutasies.
2. Beskryf die uitwerking wat mutasies op gene kan hê.

Werk aan 13.2 Pakkie - beskikbaar Woensdag

Videogreep oor vertaalproses - Menslike genoomanimasie

Voltooi aantekeninge indien nodig

Proteïensintese Werkkaart

Videogreep oor vertaalproses - Menslike genoom-animasie

Voltooi 13.1 en 13.2 Pakkie vir Dinsdag

1. Identifiseer die chemiese komponente van DNA.

2. Bespreek die eksperimente wat lei tot die identifikasie van DNA as die molekules wat die genetiese kode dra

3. Beskryf die stappe wat lei tot die ontwikkeling van die dubbelheliksmodel van DNS

1. Som die gebeure van DNA-replikasie op

2. Vergelyk DNA-replikasie in prokariote met dié van eukariote

Begin met die konstruksie van DNA-model

Werk aan Ch. 13 Inleidingsvrae

Pypskoonmaker Model Aktiwiteit

Deel tussentydse hersieningspakkie uit - wat volgende Vrydag beskikbaar is

Meiose Diagram/kontrolelys Werkkaart - voltooi vir huiswerk, betaal môre

Midterm Review Pakkie wat volgende Vrydag beskikbaar is

Vocab Warm up - Vasvra volgende Dinsdag

Mitose/Meiose Toets volgende Woensdag

Korrekte Huiswerk Wksh, meiosediagramme/kontrolelys

Midterm Review Pakkie wat volgende Vrydag beskikbaar is

Korrekte HW - 10.3 en 10.4 pakkie

Studente sal die moontlike voordele en kwessies met betrekking tot stamselnavorsing kan identifiseer.

Hersien Mitose - Werkkaart

Lees 10.3 en 10.4. - Voltooi werkkaarte vir Maandag

Groot idee: sellulêre basis van lewe, energie

Discuss where organisms get energy.
Define Cellular Respiration
Determine the relationship between photosynthesis and cellular respiration
9.2 Objectives
Determine what happens during the process of glycolysis and the krebs cycle
9.3 Objectives
Explain how organisms generate energy when oxygen is not available.

Finish Cell Respiration Notes

Review Cell Respiration - Energy in a cell worksheet

Review Cell Respiration and Photosynthesis - Quiz Wednesday

Photosynthesis/Cell Respiration Quiz

Work on Ch. 10 Intro Questions - Due Friday

Warm up - Get chromebooks and answer question in Google Classroom

Begin Mitosis Notes - Ch 10.1

Chapter 10 Intro Questions due Tomorrow

Continue Ch. 10 Notes - 10.2

Big Idea: Cellular Basis of Life, Energy

Students will be able to explain why ATP is useful to cells.
Students will be able to explain the purpose of photosynthesis.
8.2 Objectives
Students will learn the equation for photosynthesis
Students will be able to describe the role of light, pigments, and electron carrier molecules in photosynthesis.
8.3 Objectives
Students will be able to list the events in the light dependent reactions and in the dark reactions.
Students will be able to compare and contrast the light and dark reactions.

Students will be able to explain how different factors can affect the rate of photosynthesis.

Reinforcement Worksheet on ATP

Check and correct Photosynthesis Graphs

Finish Photosynthesis Notes

Photosynthesis Quiz Tomorrow

Begin Ch. 9 Intro Questions

Big Idea: Cellular Basis of Life, Energy

Students will be able to explain why ATP is useful to cells.
Students will be able to explain the purpose of photosynthesis.
8.2 Objectives
Students will learn the equation for photosynthesis
Students will be able to describe the role of light, pigments, and electron carrier molecules in photosynthesis.
8.3 Objectives
Students will be able to list the events in the light dependent reactions and in the dark reactions.
Students will be able to compare and contrast the light and dark reactions.

Students will be able to explain how different factors can affect the rate of photosynthesis.

Finish Photosynthesis Notes

No Class - Parent Teacher Conferences

No Class - Early Dismissal

Big Idea: Cellular Basis of Life, Energy

Students will be able to explain why ATP is useful to cells.
Students will be able to explain the purpose of photosynthesis.
8.2 Objectives
Students will learn the equation for photosynthesis
Students will be able to describe the role of light, pigments, and electron carrier molecules in photosynthesis.
8.3 Objectives
Students will be able to list the events in the light dependent reactions and in the dark reactions.
Students will be able to compare and contrast the light and dark reactions.

Students will be able to explain how different factors can affect the rate of photosynthesis.

Week 12 11/12 - 11/16
Monday

Review for cell transport quiz tomorrow

Work on Ch. 8 Intro Questions 8.1 and 8.2 - due Friday

Begin Photosynthesis Notes

Chloroplast Graphing Worksheet

Parent Teacher conferences- no class

Early Dismissal - weather related

Finish Photosynthesis Notes

Or possibly Photosynthesis Lab

1. Explain what is happening during diffusion and osmosis.

2. Compare and contrast passive and active transport

1. Explain how individual cells maintain homeostasis.

2. Determine how the cells of multicellular organisms work together to maintain homeostasis.

Correct Osmosis/Diffusion Worksheet

Quizlet Live Vocab Review

Finish Gummy bear osmosis/diffusion lab

Work on 7.3 part of cell packet

1. Examine functions of all cell organelles.

2. To learn how cell structures are adapted to their functions.

4. Compare and contrast chloroplasts and mitochondria.

5. Explain importance and structure of cell membrane.

1. Explain what is happening during diffusion and osmosis.

2. Compare and contrast passive and active transport

Review Prokaryotes and Eukaryotes

Work on 7.1 and 7.2 of Cell Packet - Complete for Tuesday

Review for Cell Organelle Test on Wednesday

Notes on Cell Membrane Structure

2. Describe how the different types of microscopes work.

3. Distinguish between prokaryotes and eukaryotes.

1. Examine functions of all cell organelles.

2. To learn how cell structures are adapted to their functions.

4. Compare and contrast chloroplasts and mitochondria.

5. Explain importance and structure of cell membrane.

Correct Organelle Worksheet

Cell Diagram - Students draw and label from board

Cell Organelle Quiz on Friday

Review Organelles - Quiz tomorrow

Work on 7.3 Questions - due Tuesday

2. Describe how the different types of microscopes work.

3. Distinguish between prokaryotes and eukaryotes.

1. Examine functions of all cell organelles.

2. To learn how cell structures are adapted to their functions.

4. Compare and contrast chloroplasts and mitochondria.

5. Explain importance and structure of cell membrane.

Cell Theory and Eukaryotes/Prokaryotes

Correct Organelle Chart in Class

Finish Correcting Organelle Chart

Warm up - cell drawings worksheet

Finish Coloring Cell Diagram

Big Idea: Matter and Energy

To learn the basic chemical principles that affect living things.

1. Identify the three subatomic particles found in atoms

2. Describe the two main types of chemical bonds

1. Explain the unique properties of water.

2. Explain the difference between acidic and basic solutions.

1. Describe the unique qualities of carbon

2. Describe the structures and functions of each of the four groups of macromolecules.

1. Explain how chemical reactions affect chemical bonds

2. Describe how energy changes affect how easily a chemical reaction will occur.

3. Explain why enzymes are important to living things.

Complete Review Crossword for Thursday

Ch. 2 Chemistry Test on Friday

Look at Pineapple record results and work on questions

Ch. 2 Chemistry Test on Friday

Ch. 2 Chemistry Test tomorrow

Begin working on Ch. 7 Cell Questions

Big Idea: Matter and Energy

To learn the basic chemical principles that affect living things.

1. Identify the three subatomic particles found in atoms

2. Describe the two main types of chemical bonds

1. Explain the unique properties of water.

2. Explain the difference between acidic and basic solutions.

1. Describe the unique qualities of carbon

2. Describe the structures and functions of each of the four groups of macromolecules.

1. Explain how chemical reactions affect chemical bonds

2. Describe how energy changes affect how easily a chemical reaction will occur.

3. Explain why enzymes are important to living things.

Review Macromolecules - make foldable

Review Macromolecules - Sorting Game

Quiz on 2.3, Organic Molecules Thursday

Quiz on 2.3, Organic Molecules Thursday

Work on Review Packet - due Wednesday

Big Idea: Matter and Energy

To learn the basic chemical principles that affect living things.

1. Identify the three subatomic particles found in atoms

2. Describe the two main types of chemical bonds

1. Explain the unique properties of water.

2. Explain the difference between acidic and basic solutions.

1. Describe the unique qualities of carbon

2. Describe the structures and functions of each of the four groups of macromolecules.

1. Explain how chemical reactions affect chemical bonds

2. Describe how energy changes affect how easily a chemical reaction will occur.

3. Explain why enzymes are important to living things.

Finish Water Lab - Questions

Review Properties of water

Begin 2.3 Organic Chemistry Notes

Chemical Models - Build Sucrose

Big Idea: Matter and Energy

To learn the basic chemical principles that affect living things.

1. Identify the three subatomic particles found in atoms

2. Describe the two main types of chemical bonds

1. Explain the unique properties of water.

2. Explain the difference between acidic and basic solutions.

1. Describe the unique qualities of carbon

2. Describe the structures and functions of each of the four groups of macromolecules.

1. Explain how chemical reactions affect chemical bonds

2. Describe how energy changes affect how easily a chemical reaction will occur.

3. Explain why enzymes are important to living things.

Complete Chapter 2 Questions

Chapter 2 Chemistry Notes

Review Inorganic Chemistry

Students will be able to identify the parts of a microscope.

Students will learn the correct procedure to follow when completing microscope drawings.

Students will able to correctly use the microscope to observe microscopic organisms.

Make sure Study Island is done for tomorrow

Review Characteristics of Life Lab

Begin working on Chapter Review Questions - due Wednesday

Correct Review Questions/Review for test

Introduce Microscope - Label parts

Begin working on Ch. 2 questions - due next Monday

-State the goals of science

-Describe the steps used in the scientific method

-Explain the significance of a scientific theory

-Explain the eight characteristics of life

Check 1.2 and 1.3 Questions

Chapter 1 Test next Wednesday

Chapter 1 Test next Wednesday

Characteristics of Life Lab - finish for homework

Vocab Review - Vocab Quiz Tuesday

Use computers to set up study island. Due 9/11

T est on Ch. 1 next Wednesday

-Introduce course material and familiarize students with resources

-State the goals of science

-Describe the steps used in scientific methodology.

-Explain what a scientific theory is.

Assign Chromebooks, log in to Google Classroom

Complete Personal Info Form

Discuss Importance of Course

Homework - Have book covered by Thursday

Review Syllabus - Have parent sign for H.W. for Wed.

Share Previous year student quotes

H.W. - Read and Complete Outline for Section 1.1, pages 3-9, book covered by Thursday.

Turn in Parent Syllabus Sheets

H.W. - Read and complete Section 1.1 questions for tomorrow. Pages 3 -15 , Book covered by Thursday.

Books will be checked for covers, Parent Signature Sheets Collected

H.W. - Read and Outline Section 1.2 and 1.3, pages 10-25

Applied Biology Syllabus

Worm diagrams & Chordate Powerpoint

No Class - Awards Ceremony

Collect Ch. 15 and 16 Packets

Chapter 5
Big Idea: Interdependence in Nature
Populations
5.1 How Populations Grow
-List the Characteristics used to describe a population
-Identify factors that affect population growth
-Describe exponential growth
-Describe logistic growth
5.2 Limits to Growth
-Identify factors that determine carrying capacity.
-Identify the limiting factors that depend on population density.
-Identify the limiting factors that do not depend on population density.
5.3 Human Population Growth
Discuss the trend of human population growth.
Explain why population growth rates differ in countries throughout the world.
Chapter 6
Big Idea: Interdependence in Nature
Humans in the Biosphere
6.1 A Changing Landscape
-Describe human activities that can affect the biosphere
-Describe the relationship between resource use and sustainable developement
6.2 Using Resources Wisely
-Describe how human activities affect soil, land, air, and water resources
6.3 Biodiversity
-Describe biodiversity and explain its value.
-Identify current threats to biodiversity.


DNA Notes

DNA Notes is a PowerPoint presentation that covers DNA structure, DNA replication, and Protein Synthesis.

This truly is the ultimate DNA presentation. Everything you need to teach about DNA is included here. My style is to be informative, visual, scaffolding and FUN- keeping the students engaged with embedded videos and the occasional joke.

Complete with plenty of pictures, videos, tips, and analogies.

This 65 slide power point presentation, which includes student guided notes. You may present it all at once or chunk it into different sections- totally up to you! Students notes ARE included!

Zip folder contains:
-PowerPoint (.pptx)
-Two Student Versions
(everything is editable)

**Do you use interactive notebooks in your classroom?**
Check out my DNA Interactive Notebook or my Mutations Interactive Notebook.

➩ ➩ Looking for the entire curriculum? You can get this unit along with several others in my Big Biology Curriculum Bundle - and if you'd like interactive notebooks with that, check out my Big Biology Curriculum Bundle Plus INB

Terms of Use:
Vanessa Jason Biology Roots
For single classroom only not to be shared publicly (do not create publicly accessible links).
Copying for more than one teacher, classroom, department, school, or district is prohibited. Failure to comply is a violation of the DMCA (Digital Millennium Copyright Act).


7.2: DNA Teacher's Preparation Notes - Biology

BIG IDEA - Information and Heredity

11.1 The Work of Gregor Mendel

-Describe Mendel's studies and conclusions about inheritance

-Describe what happens during segregation

11.2 Applying Mendel's Principles

-Explain how geneticists use the principle of probability to make Punnett squares

-Explain the principle of independent assortment

-Explain how Mendel's principles apply to all organisms.

11.3 Other Patterns of Inheritance

-Describe the other inheritance patterns.

-Explain the relationship between genes and the environment.

-Identify the types of human chromosomes in a karyotype.

-Describe the patterns of the inheritance of human traits.

-Explain how pedigrees are used to study human traits.

14.2 Human Genetic Disorders

-Explain how small changes in DNA cause genetic disorders.

-Summarize the problems caused by nondisjunction.

Correct Punnett Square Worksheet - Test tomorrow

Work on Chapter Review Questions

Ch. 11 Pg. 332 1-4, 7-12, 13-17, Ch. 14 Pg. 412 1-6, 8-15 - due Monday

Ch. 11 Pg. 332 1-4, 7-12, 13-17, Ch. 14 Pg. 412 1-6, 8-15 - due Monday

Lab: What Darwin Never Knew

Read 16.1 and 16.2 (Pgs. 450 - 458), complete Intro questions - due Monday

Lab: What Darwin Never Know

BIG IDEA - Information and Heredity

11.1 The Work of Gregor Mendel

-Describe Mendel's studies and conclusions about inheritance

-Describe what happens during segregation

11.2 Applying Mendel's Principles

-Explain how geneticists use the principle of probability to make Punnett squares

-Explain the principle of independent assortment

-Explain how Mendel's principles apply to all organisms.

11.3 Other Patterns of Inheritance

-Describe the other inheritance patterns.

-Explain the relationship between genes and the environment.

-Identify the types of human chromosomes in a karyotype.

-Describe the patterns of the inheritance of human traits.

-Explain how pedigrees are used to study human traits.

14.2 Human Genetic Disorders

-Explain how small changes in DNA cause genetic disorders.

-Summarize the problems caused by nondisjunction.

Punnett Quiz - - Sex-Linked, Incomplete Dominance and Codominance on Tuesday

Punnett Quiz on Sex Linked, Codominance, and Incomplete Dominance

Finish Notes on Pedigrees

Pedigree Worksheet for HW

Lab: Punnett Review Problems

Vocab Review - Vocab Quiz on Friday

Correct Pedigree Worksheets

Vocab Review - Quizlet Live Quiz on Friday

Lab: Punnett Review Problems

Punnett Test next Tuesday

BIG IDEA - Information and Heredity

11.1 The Work of Gregor Mendel

-Describe Mendel's studies and conclusions about inheritance

-Describe what happens during segregation

11.2 Applying Mendel's Principles

-Explain how geneticists use the principle of probability to make Punnett squares

-Explain the principle of independent assortment

-Explain how Mendel's principles apply to all organisms.

11.3 Other Patterns of Inheritance

-Describe the other inheritance patterns.

-Explain the relationship between genes and the environment.

-Identify the types of human chromosomes in a karyotype.

-Describe the patterns of the inheritance of human traits.

-Explain how pedigrees are used to study human traits.

Punnett Quiz - - Sex-Linked, Incomplete Dominance and Codominance on Tuesday

Punnett Quiz on Sex Linked, Codominance, and Incomplete Dominance

Finish Notes on Pedigrees

Pedigree Worksheet for HW

Design a Species Project - Due 3/9

Correct Pedigree Worksheets

Work on Design a Species Activity - Due 3/9

Vocab Review - Quizlet Live

Practice warm up punnetts

Lab pd. 6 - Romanov Activity

Genetics Project due Monday

Hand out Punnett Review Problems

Punnett Test next Tuesday

Work on Ch, 14.1 and 14.2 Packet - due Friday

Lab: Work on Design a Species Project

Correct Punnett Sheet on Incomplete Dominance, Codominance Problems

Notes on Blood Type, and Polygenic Traits and Sex Linked Traits

Complete Blood Type Practice Problems and other punnett practice problems - finish worksheets for homework.

14.1 and 14.2 Packet - due Friday

Create A Species project due 3/9

Correct Punnetts - Sex Linked Problems and other punnetts

Practice Sex Linked Problems

14.1 and 14.2 Packet - due Friday

Correct 14.1 and 14.2 Packet

Correct Practice Punnetts

Create A Species project due 3/9

Introduce and Practice monohybrids

Lab Pd. 4 Coin Toss Baby Lab

Correct Monohybrid Worksheet

Complete Practice Problems

Monohybrid Quiz on Tuesday

Students will be able to compare and contrast mitosis and meiosis

Review Mitosis/Meiosis - Test Wednesday

Begin Cancer Presentations

Notes on 11.1 using powerpoint and note outline

Mitosis/Meiosis Study Island due Friday

Vocab Review - Quiz Friday

Study Island Assignment due Friday

Meiosis Worksheet - due tomorrow

Correct Meiosis Worksheet

Quizlet Live - Vocab Quiz tomorrow

Lab: Cancer Project - due next Tuesday

Chapter Review Questions due Tuesday-

Pgs. 300-302 #1-5, 8-14, 20-26, 27-30 Pg. 333-334 #19, 20, 22, 23, 25

Cancer Project due next Tuesday

Hand out worksheets for 10.3 and 10.4 - due Thursday

Work on Webquest for 10.3/10.4 Packet

10.3 Powerpoint - Cell Cycle Control and Cancer

Introduce Cancer Project - decide on group and topic

10.4 Powerpoint - Stem cells

Correct 10.3 and 10.4 worksheets

Study Island due next Friday

Big Idea: Growth, Development, and Reproduction

10.1 Cell Growth, Division, and Reproduction
Students will be able to explain the problems that growth causes for cells.
Students will be able to compare and contrast sexual reproduction.
10.2 The Process of Cell Division
Students will be able to describe the role of chromosomes in cell division.
Students will be able to explain the main events of the cell cycle.
Students will be able to describe what happens during the four phases of mitosis.
Students will be able to describe the process of cytokinesis.
10.3 Regulating the Cell Cycle
Students can explain how the cell cycle is regulated.
Students can describe how cancer cells are different from other cells.
10.4 Cell Differentiation
Students will be able to explain the process of differentiation.
Students will be able to define stem cells and explain their importance.

Students will be able to identify the possible benefits and issues relating to stem cell research.


Top 3 Methods to Study the Function of Genes

Here we detail about the top three methods to study the function of genes.

The three functions are: (1) Transcriptomics, (2) Gene Knockout, and (3) Cloning an Organism.

1. Transcriptomics:

Study of the gene expression in the genome is called transcriptomics. We can study the expression of individual group of genes or all genes in the genome gene).

Expression of the genes can be studied by a technique called Northern Blotting. It is very similar to the earlier described technique called as Southern Blotting. In Northern blotting, the target is the total RNA (m-RNA, t-RNA, r-RNA), or only the m-RNA. In this method the RNA is isolated and separated in an agarose gel.

In the Gel and the buffer some amount of formaldehyde is added, because it helps the RNA to remain in linear form. Once the RNA is separated the RNA is transferred on a solid membrane support (nitrocellulose, nylon etc). Then the membrane is hybridized with the probe which is the gene of interest for which we want to study the expression.

The probes are usually radiolabeled and, after hybridization, the membrane is washed to remove the loosely bound or nonspecifically bound probe. Autoradiography is then done to see the signal of the radioactive probe. In this the intensity of the radioactive signal is directly proportional to the expression (amount of m-RNA of that particular

We use a modified technique very similar to Northern Blotting to study the expression of a group of genes. This technique is called Blott-Array. In this technique the group of genes whose expression we want to study is spotted on a Nylon membrane. Then the membrane is hybridized with the radiolabeled RNA.

After hybridization, the loosely bound RNA is removed by washing and the blotting membrane is exposed to autoradiography. In this the intensity in each spot (where the particular gene is spotted) is directly proportional to the expression of that particular gene (Fig. 8.7).

2. Gene Knockout:

This technique is used to study the function of the gene by making it nonfunctional. The principle behind this is simple. Under normal condition a particular gene is doing its function by the production of RNA from transcription and, finally the protein by translation. By inactivating the gene (gene knockout), we are able to switch-off the gene and the phenotype of the organism can be studied in the absence of the product made from that particular gene.

There are various ways to knockout a gene, by disrupting the gene in the genome, by deleting the whole or part of the gene, or by inserting an additional DNA in the gene, which act as an insulator in the transcription. These methods of Gene knockout are now becoming very powerful tools in the study of the genome and also the function of individual genes.

3. Cloning an Organism:

A clone means an exact replica of an individual which has the same genetic makeup as the source from where it has originated. In this modern age of Biotechnology, several strategies have been developed to clone a whole organism. We will describe here the most popular and successful method—nuclear transfer technique.

In this technique the egg cell is taken and the nucleus of the egg cell is removed with the help of an instrument called Micro Manipulator. Then the target cell or the nucleus, which we intend to clone, is fused with the enucleated egg cell (from where the nucleus has been removed earlier).

After fusion the egg cell is artificially induced to divide and the dividing egg cell is then implanted in the womb of a surrogate mother. This whole procedure is depicted in short in Fig. 8.8. Fast development in the field of Molecular Biology and Genetics and with the contributions from other branches of science like Physics and Chemistry, new tools and techniques of biotechnology are coming up rapidly.

There are regular improvements in the already existing techniques. This is helping in a great way to study and understand various complexities of life. The applications of these new technologies are also for the betterment of mankind and nature.


Teaching Sequences

Every school will have unique circumstances that will dictate the order of the topics in Biology. The combination of HL and SL classes, climate, school location, national programs, teacher preferences will all factor in on the choice of order of topics.
Below are four suggested teaching schemes for different situations.

Teaching SL and HL students in the same class

This plan assumes that some lessons each week have both SL and HL students and there is probably one lesson each week with only HL students. It is sometimes possible in a school to be more flexible with the lessons if the SL students have a 'study lesson' while the HL students have the single lesson. It is advantageous to put two or three HL lessons together and to complete a chunk of a topic in one three lesson sequence, then teach the SL students with HL students for all the lessons in the following two weeks. This makes for better teaching and learning of the HL topics. I think it's important to give the SL students plenty of notice about the HL lessons so they can prepare to get other things done during this week.

Outline Timings

SL Students

HL Students

Topic 2: Molecular biology

Topic 10 HL Genetics & evolution

Option A: Neurobiology & behaviour
(this could be any of the options)

HL Extra: Option A Neurobiology

Topic 11: HL Animal Physiology

Topic 8: HL Metabolism, cell respiration & photosynthesis

A mixed HL and SL class in a two semester school year.

Outline Timings

SL Students

HL Students

1 st Semester

Topic 2: Molecular biology

2 nd Semester

Topic 10 HL Genetics & evolution

3 rd Semester

Option A: Neurobiology & behaviour
(this could be any of the options)

HL Extra: Option A Neurobiology

Topic 11: HL Animal Physiology

Completion of Topics 6 & 11

Topic 8: HL Metabolism, cell respiration & photosynthesis

Teaching SL and HL students in the same class with two teachers

This model assumes that there are two teachers sharing the class with half of the lessons each. There are advantages because by the time teacher A reaches the cell membrane section of topic 1 the students will have learned about phosphate, lipid and the 3D structure of proteins.

Outline Timings

Topic 2: Molecular biology

Topic 5: Evolution and biodiversity

Option A: Neurobiology & behaviour
(this could be any of the options)

Topic 11: HL Animal Physiology (continued)

HL Extra: Option A Neurobiology

Topic 8: HL Metabolism, cell respiration & photosynthesis

Thoughts about teaching mixed classes

I have known a biology teacher teach only the SL core material in the first year and the AHL material in the 2nd year. This is not a very realistic scheme unless there are special timetable requirements, or SL students use time in the second year for something specific. It would leave the SL students with little to do in the 2nd year and it would give a long gap between studying the biology and taking the exam.

SL students are commonly taught in a mixed SL / HL class and I have used both the models above. Encouraging these students to come to all classes and when the AHL material comes along let the students leave with work to do. For example to work on their lab reports, to study for an upcoming test or to catch up on something they have missed. This does demand a certain amount of self discipline on their part but as they are young adults, they need opportunities to learn independent study skills some time!

Teaching SL students separately

There are a number of options that a better for the students. I have for a couple of years managed to split the SL and HL groups during the second year only. This is definitely better than keeping the groups mixed right to the end. In an ideal world SL students and HL students can be taught separately for two years. Here are a few notes about this.

It is certainly possible to really break up the teaching into a new sequence in this situation. You could take an evolutionary approach, begin with origins of life, principles of evolution and then look at 'primordial soup' while teaching the molecules topic then membranes, followed by single celled life, and study the cells topic, genetics then ecology followed by humans.

I have always found resistance from students when I have jumbled topics together, especially from those who want to keep scrupulous revision notes from day one, and they wand to use a published revision guide alongside lessons to help.

Outline Timings

SL Students

(Some like to teach the basic parts of topic 2 before the membranes topic so that students understand the structure of phospholipids and proteins )

Topic 2: Molecular biology

Option A: Neurobiology & behaviour
(this could be any of the options)

Teaching HL students separately

There is certainly the possibility to save time by teaching all the overlapping topics just once in this setup. Overlapping sections occur in Genetics topics, between chemicals, nucleic acids, and respiration topics, and between humans and animal physiology topics.


Exam Questions on Molecular Biology | Biology

Ans: This hypothesis accounts for the observed pattern of degeneracy in the third base of a codon. According to this hypothesis the third base can undergo with the corresponding first base in the anticodon. The importance of wobble and degeneracy of the genetic code is that cell does not have to synthesize a different tRNA for each of the 61 sense codons. A simple example is that only two different tRNA anticodons are needed to recognize four different glycine codons.

Q.2. What is Shine-Dalgarno sequence? In which groups of microorganisms it is found?

Ans: The Shine-Dalgarno sequence is located before the start sequence of mRNA. This nucleotide sequence allows the mRNA to align with the 30S ribosomal subunit of the bacterial cell. It is about 7 bases upstream earlier) towards the 5 ‘-P end of the AUG start codon on the mRNA and is a polypurine consensus sequence AGGAGG and is referred to as Shine-Dalgarno sequence (Fig. 33.7). It is found in bacterial and archaeal cells.

Q.3. What do the codons UGA, UAA and UAG mean in normal translation?

Ans: In normal translation they mean for “Stop” codons.

Q.4. Why is genetic code said to be degenerate?

Ans: It is because more than one codon can code for the same amino acid.

Q.5. How many termination codons or nonsense codons are there?

Ans: There are only three termination codons also, called “nonsense codons” as they do not code for any amino acid.

Q.6. The codon AGG normally codes for argine but in altered translation it codes for stop. Where does it occur?

Ans: It occurs in human mitochondria.

Q.7. What is odd in the studies made in the mitochondrial DNA (double-stranded circular DNA genome) as one proceeds from lower to higher eukaryotes?

Ans: While one proceeds from lower to higher eukaryotes, the odd thing in the mitochondrial genome is that it gets smaller, e.g., the yeast mitochondrial DNA is five times larger than that of the human mitochondria.

Q.8. What has enabled a given tRNA that sometimes it specifically recognizes several codons?

Ans: The wobble in the base pair at the 5′ end on the anticodon enables the given tRNA to recognize several codons.

Q.9. All newly synthesized bacterial proteins start (initiate) with formylmethionine (may be abbreviated as fmet). How is formyl group removed from the fmet polypeptide in bacteria?

Ans: The formyl group is often removed from formyl-methionine by the enzyme deformylase leaving behind the methionine as the first amino acid in the polypeptide chain.

Q.10. What are genes? Define.

Ans: A gene may be defined as a sequence of nucleotides which specifies a particular polypeptide chain or RNA sequence or that regulates the expression of other genes. The genes which code for proteins are referred to as structural genes or cistrons while the other genes bearing regulatory function are called regulatory genes. The regulatory genes work to control the expression of structural genes. The structural and regulatory genes collectively constitute the genotype which determines the phenotype, i.e., observable structural and functional characteristics.

Ans: A DNA sequence which codes for one or more structural genes (polypeptides) of related function and the DNA sequence which regulates the expression.

Q.12. What controls induction and repression?

Ans: The regulatory genes that produce a regulator protein controls induction (i.e., causing increase in rate of synthesis of an enzyme), and repression (i.e., blockage of gene expression).

Q.13. What is the lac operon?

Ans: The lac operon stands for lactose operon, an operon which contains genes specifying proteins involved in the utilization of (3 -galactosides such as lactose. The lac operon occurs in Escherichia coli at ca. (= about) 8 minutes on the chromosome map. It has the structural: promoter-operator lac Zr-lac Y-lac A. The lac Z gene encodes P-galactosidase, lac Y encodes (3 -galactoside permease and lac A encodes thiogalactoside transacetylase (Fig. 33.8).

Q.14. What is catabolite repression?

Ans: The catabolite repression is the repression of transcription of genes coding for certain inducible enzyme systems by glucose or other readily utilizable carbon sources.

Q.15. What are positive regulators (activators) and negative regulators (repressors)? Describe.

Ans: Bacteria possess many enzymes whose rate of synthesis depends on the availability of external food molecules. These external molecules called inducers and co-repressors usually determine the rate of synthesis of enzymes by controlling the synthesis of their mRNA templates. Inducers and co-repressors act by binding to regulatory proteins referred to as activators and repressors.

Activators are positive regulators because their presence is required for the regulated enzyme to be made while repressors act as negative regulators because their regulatory activity is to prevent the synthesis of proteins. Thus, when lactose is absent the lac operon (lactose operon) repressor prevents synthesis of enzymes that metabolize lactose. However, upon binding an inducer (a molecule related to lactose) the repressor loses this Ability and permits the production of enzymes. The arabinose operon C protein which is an activator causes making of arabinose enzymes on binding to the inducer arabinose.

Q.16. What is palindromic sequence of DNA?

Ans: Literally speaking palindrome is a word that reads the same backward and forward. The palindromic sequence is a region of a nucleic acid that contains a pair of inverted repeat sequences. In a double stranded molecule of DNA such a region shows two-fold rotational (dyad) symmetry or hypemated dyad symmetry if the two IR sequences are separated by another sequence. A double-stranded palindromic sequence can adopt either of two possible formations:

1. A linear structure with inter-strand hydrogen bonding, e.g.,

2. A cruciform structure in which of two strands each forms hairpins by intra-strand hydrogen bonding.

Q.17. Who discovered that X-rays induce mutations?

Ans: Hermann Muller and L.J. Stadler discovered independently in 1927 that X-rays induce mutations.

Ans: A cistron is a gene as defined in terms of the CIS-TRANS TEST, i.e., in a diploid cell or merozygote either of two homologous sequences in a genetic nucleic acid in which two mutations in trans fail to exhibit complete complementation. A cistron may also be defined as the functional unit of genetic inheritance a segment of genetic nucleic acid which codes for a specific polypeptide chain. The term cistron has also been used as a synonym for gene.

Ans: The term recon was coined by S. Benzer. According to him it is a unit of genetic subdivision beyond which recombination does not occur.

Q.20. Define a mutator or mutator gene.

Ans: A mutator gene or mutator is designated as must within which certain mutations cause an increase in the spontaneous mutation rate in other genes, e.g., Escherichia coli mutations in the gene encoding the e subunit of DNA polymerase III (dna Q and mut D alleles) can result in extremely high levels of spontaneous mutations. The mutant alleles may differ from the wild type, e.g., by only one or two amino acid changes in the ε subunit. The mutation may lead to reduced accuracy in the polymerising (nucleotide selection) activity or in the proof reading activity of the enzyme. Some other mutator genes in E.Coli include in the mismatch repair system.

Q.21. What are split genes? Describe.

Ans: The split genes may be defined as the genes that are coded for, by noncontiguous segments of the DNA so that the mRNA and the DNA for the protein product of that gene are not colinear. These are the genes with intervening nucleotide sequences not involved in coding for the gene product.

The split genes have also been regarded as interrupted genes. A structural gene encoding a protein, rRNA or tRNA that contain one too many intervening sequences (introns) that although represented in primary RNA transcript of the gene are absent from the mature RNA molecule (mRNA, tRNA), therefore, do not contribute to the structure of the gene product.

Thus mutation of the RNA transcript of a split gene must involve a process of splicing to delete the intron and join together the remaining sequences called exons. In the case of mRNA the sequence of exons includes the coding sequence of the gene as well as noncoding leader and/ or trailor sequences. Introns themselves are usually noncoding. Most of the nuclear structural genes in higher eucaryotes are split genes.

Q.22. What are overlapping genes?

Ans: The overlapping genes are two or more genes in which part or complete gene is co-extensive with part of another. The genes may be translated in different reading frames or in the same reading frame with different start and/or stop points or different splicing patterns. The phenomenon of overlapping genes maximizes the coding capacity of a genome and can also provide a means for the regulation of expression of genes.

Q.23. The history of DNA world is written in gene sequences. Justify this statement.

Ans: The evolution of the organisms from a common ancestor is represented by a branched pathway known as geological tree (also known as phylogenetic or evolutionary tree). The branching pattern of tree is calculated using the principle of parsimony (based on economy) to determine the minimum number of genetic changes required to derive the sequence of the gene in each organism from a common ancestor. It is sometimes reasonable to assume that highly conserved protein like globin and cytochorme c can be used as a molecular clock to measure how long the species have been diverging from each other.


Lecture Notes & Study Materials

Select your topics:

@. Biochemistry:

More Biochemistry Lecture Notes → Biochemistry

@. Human Physiology and Endocrinology

More Human Physiology Lecture Notes → Human Physiology

@. Plant Physiology

More Plant Physiology Lecture Notes → Plant Physiology

@. Biotechnology:

More Biotechnology Lecture Notes → Biotechnology

@. Molecular Biology:

More Molecular Biology Lecture Notes → Molecular Biology

More Genetics Lecture Notes → Genetics

@. Microbiology

More Microbiology Lecture Notes → Microbiology

@. Immunology

More Immunology Lecture Notes → Immunology

@. Ecology & Biodiversity

More Ecology Lecture Notes → Ecology

@. Biophysics (Biophysical Instrumentation)

More Biophysics Lecture Notes → Biophysics

@. Biostatistics

More Biostatistics Lecture Notes → Biostatistics


For some subjects, you would probably think, “oh, they’re so easy. Why do I need a whole copy of notes for them?” And there, we’d disagree. The board examination is nothing like the school test. You need to know what length and pattern of answers works for getting a good score. Our notes will prepare you for this the right way.


Kyk die video: DNK i RNK molekularna biologija (Oktober 2022).