Inligting

Watter soort vlieg is dit?

Watter soort vlieg is dit?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Ek het hierdie ou gevind wat in my wasbak gekuier het, maar hy het nie weggevlieg toe ek 'n skottel in die wasbak gesit het nie. Dit blyk dat dit dood is. Die voorste deel lyk presies soos 'n huisvlieg. Maar ek het nog nooit gesien hoe die agterkant (buik) so lyk nie. Enige idees?


Dit is waarskynlik 'n vlieg wat deur die swamme doodgemaak word Entomophthora muscae (of nou verwant) of dalk 'n Cordyceps -swam. Hierdie soort swamme val hoofsaaklik insekte aan, en jy sien aanvalle soms as wit, geswelde buik in vlieë.


(Foto van algemene infeksie, van bugguide.net)

Dit is ook bekend dat hierdie swamme die gedrag van geïnfekteerde individue verander, sodat hulle bv. klim op hoë plante om te sterf (soms 'zombie-insekte' genoem), sodat die swamspore beter versprei en versprei kan word. Baie inligting oor die gedragsveranderinge van gashere deur swamme kan gevind word in Roy et al. (2006), maar dit kan beide klim na blootgestelde plekke en spesiale meganismes behels om gasheer by die dood te heg:

In baie gevalle behels die finale interaksies, of eindspeletjies, tussen 'n gasheer en patogeen komplekse gedragsveranderinge, soos die besmette insek wat 'n verhoogde posisie soek waar windstrome conidia effektief kan versprei. Hoogtesoektogte deur insekte in die laat stadium van infeksie is 'n algemene verskynsel wat deur vroeë insekpatoloë herken is wat opgemerk het dat siek lepidopteranlarwes, soos Lymantria monacha (die nonmot), besmet met baculovirusse migreer na die bome van die bome waar hulle doodgaan ( 94). Hierdie gasheer-veranderde gedrag is die naam "Wipfelkrankheit" of "Wipfelsucht" (wat boomsiekte in Duits beteken) vir virussiektes (41) en "top-siekte" vir swamsiektes (24, 57, 106).

en

Sommige swamme produseer nie risoïede nie, maar die gasheer word alleen gehou deur gasheerstrukture, naamlik die bene of monddele (kakebene of stilette). Die houding van die dooie insek is oor die algemeen kenmerkend van die betrokke patogeenspesies. Byvoorbeeld, E. grylli-besmette sprinkane (Figuur 3a) en E. scatophagae-geïnfekteerde geel misvlieë (Figuur 3b) soek verhewe posisies op grasse of ander plantegroei en klou styf vas (doodgreep) met hul bene (96). Tipuliede wat met swamspesies van die genera Eryniopsis en Entomophaga besmet is, heg ook aan grasse met hul lang bene, dikwels oorhangende water (Figure 5b,c).

As u Google -beeldsoektogte doen op "Entomophthora vlieg buik"of"vlieg Cordyceps"U kan voorbeelde van infeksies sien. Ek weet nie van die vlieë spesies nie, maar Musca domestica is waarskynlik.

Vir 'n paar meer voorbeelde en inligting oor Entomophthora muscae en verwante swamme sien:

  • Roy et al. 2006. Bizzare -interaksies en eindspeletjies: Entomopatogene swamme en hul geleedpotige gasheer. Jaarlikse oorsig van Entomologie 51(1) (pdf)

  • Biologiese beheer: Entomophthora muscae, webblad van Cornell Uni.

  • Harmon. 2012. Swam wat zombie-miere beheer, het 'n eie swamstalker. Natuur

  • Verstandsbeheer swam verander insekte in zombies (blogplasing)


Drosophila melanogaster

Drosophila melanogaster is 'n vliegsoort (die taksonomiese orde Diptera) in die familie Drosophilidae. Daar word dikwels na die spesie verwys as die vrugtevlieg, alhoewel sy algemene naam meer akkuraat is asynvlieg. Begin met Charles W. Woodworth se voorstel van die gebruik van hierdie spesie as 'n model organisme, D. melanogaster word steeds wyd gebruik vir biologiese navorsing in genetika, fisiologie, mikrobiese patogenese en lewensgeskiedenis-evolusie. Sedert 2017 is ses Nobelpryse toegeken vir die gebruik van navorsing Drosophila. [2] [3]

D. melanogaster word tipies in navorsing gebruik as gevolg van sy vinnige lewensiklus, relatief eenvoudige genetika met slegs vier pare chromosome, en 'n groot aantal nageslag per generasie. [4] Dit was oorspronklik 'n Afrika-spesie, met alle nie-Afrikaanse afstammelinge wat 'n gemeenskaplike oorsprong het. [5] Sy geografiese omvang sluit alle vastelande in, insluitend eilande. [6] D. melanogaster is 'n algemene plaag in huise, restaurante en ander plekke waar kos bedien word. [7]

Vlieë wat tot die familie Tephritidae behoort, word ook 'vrugtevlieë' genoem. Dit kan verwarring veroorsaak, veral in die Middellandse See, Australië en Suid-Afrika, waar die Mediterreense vrugtevlieg Ceratitis capitata is 'n ekonomiese plaag.


Die Bombyliidae is 'n groot vlieëfamilie wat uit honderde genera bestaan, maar die lewensiklusse van die meeste spesies is swak, of glad nie bekend nie. Hulle wissel in grootte van baie klein (2 mm lank) tot baie groot vir vlieë (vlerkspan van sowat 40 mm). [1] [2] Wanneer hulle in rus, hou baie spesies hul vlerke teen 'n kenmerkende "agtertoe"-hoek. Volwassenes voed oor die algemeen op nektar en stuifmeel, waarvan sommige belangrike bestuiwers is, dikwels met skouspelagtige lang slange wat aangepas is vir plante soos Lapeirousia spesie met baie lang, smal blombuisies. Anders as skoenlappers, hou byevlieë hul proboscis reguit, en kan dit nie terugtrek nie. In dele van Oos-Anglia verwys plaaslike inwoners na hulle as beewals, danksy hul slagtandagtige aanhangsels. Baie Bombyliidae lyk oppervlakkig soos bye en daarom is die algemene naam vir 'n familielid byvlieg. [2] Die ooreenkoms is moontlik 'n Batesiaanse nabootsing, wat die volwassenes beskerming bied teen roofdiere.

Die larfstadiums is roofdiere of parasitoïede van die eiers en larwes van ander insekte. Die volwasse wyfies deponeer gewoonlik eiers in die omgewing van moontlike gashere, heel dikwels in die gate van kewers of perdebye/eensame bye. Alhoewel insekparasitoïede gewoonlik redelik gasheerspesifiek is, dikwels hoogs gasheerspesifiek, is sommige Bombyliidae opportunisties en sal 'n verskeidenheid gashere aanval.

Die Bombyliidae bevat ten minste 4,500 beskrywe spesies, en seker nog moet nog duisende beskryf word. Die meeste spesies kom egter nie gereeld voor nie, en in vergelyking met ander groot groepe bestuiwers is dit baie minder geneig om blomplante in stedelike parke of voorstedelike tuine te besoek. As gevolg hiervan is dit waarskynlik een van die swakste insektefamilies relatief tot die spesierykdom daarvan. Die familie het 'n vaag fossielrekord, waarvan spesies bekend is uit 'n handjievol plekke, [3] die oudste bekende spesies is bekend uit die Middel -Kryt -Birmaanse amber, ongeveer 99 miljoen jaar oud. [4]

Volwasse Redigering

Alhoewel die morfologie van vleisblommetjies in detail verskil, word volwassenes van die meeste byevlieë gekenmerk deur 'n paar morfologiese besonderhede wat herkenning vergemaklik. Die afmetings van die liggaam wissel, afhangende van die spesie, van 1,0 mm tot 2,5 cm. Die vorm is dikwels kompak en die binneblad is gewoonlik bedek met digte en volop hare. Die kleur is gewoonlik onopvallend en kleure soos bruin, swartgrys en ligte kleure soos wit of geel oorheers. Baie spesies is nabootsers van Hymenoptera Apoidea. By ander spesies kom kolle van afgeplatte hare voor wat as silwer, vergulde of kopertone weerspieëlende spieëls kan dien; dit dien miskien as visuele seine by spesifieke herkenning van mededingers of mededingers, of kan dit weerkaats van weerkaatsende oppervlakdeeltjies op kaal gronde met 'n hoë inhoud van materiale soos kwarts, mika of piriet.

Die kop is rond, met 'n konvekse gesig, dikwels holopties by mans. Die antennas is van die tipe aristaat wat bestaan ​​uit drie tot ses segmente, met die derde segment groter as die ander, die stylus is afwesig (antenna van drie segmente) of bestaan ​​uit een tot drie flagellomere (antenna van vier tot ses segmente). Die monddele is aangepas om te suig en aangepas om op blomme te voed. Die lengte wissel aansienlik: die Anthracinae het byvoorbeeld kort monddele, met die labium wat eindig in 'n groot vlesige labellum, in Bombyliinae in Phthiriinae is die buis aansienlik langer en in Bombyliinae meer as vier keer die lengte van die kop.

Die bene is lank en dun en die voorpote is soms kleiner en slanker as die middel- en agterpote. Gewoonlik is hulle voorsien van borsels aan die top van die tibiae, sonder empodia en soms ook sonder pulvilli. Die vlerke is deursigtig, dikwels hialien of eweredig gekleur of met bande. Die alula is goed ontwikkel en in die rusposisie word die vlerke oop en horisontaal gehou in 'n V-vorm wat die kante van die buik openbaar.

Die buik is oor die algemeen kort en breed, subglobose-vormig, silindries of konies, saamgestel uit ses tot agt skynbare uriete. Die oorblywende uriete is deel van die struktuur van die eksterne geslagsdele. Die buik van die wyfies eindig dikwels met spinale prosesse wat gebruik word in die posisie van die eier. In Anthracinae en Bombyliinae is 'n divertikulum teenwoordig in die agtste uriet, waarin die eiers met sand gemeng word voordat dit neergesit word.

Die vlerk-venasie, hoewel veranderlik binne die familie, het 'n paar algemene kenmerke wat basies opgesom kan word in die besondere morfologie van die vertakkings van die radiale sektor en die vermindering van die vurk van die media. Die costa is versprei oor die hele marge en die subkoste is lank, en eindig dikwels op die distale helfte van die costal marge. Die radius word byna altyd in vier takke verdeel, met die samesmelting van die takke R 2 en R 3, en word gekenmerk deur die sinuositeit van die eindgedeeltes van die takke van die radiale sektor. Die venasie bied 'n merkbare vereenvoudiging in vergelyking met ander Asiloidea en, in die algemeen, met ander laer Brachycera. M 1 is altyd teenwoordig en konvergeer op die kantlyn of, soms, van R 5. M 2 is teenwoordig en bereik die kantlyn, of is afwesig. M 3 is altyd afwesig en word saamgevoeg met M 4. Die skyfsel is gewoonlik teenwoordig. Die tak M 3 +4 word geskei van die skyfsel by die distale posterior hoekpunt, sodat die middelkubitaal direk aansluit by die posterior marge van die diskale sel. Die kubitale en anale are is volledig en eindig afsonderlik op die kantlyn of konvergeer en verbind vir 'n kort afstand. Gevolglik kan die selbeker oop of toe wees.

Vleuel ventilasie tipe 1 Bombilius

Wing venation tipe 2 Miltsiekte

Vleuel venasie tipe 3 Usiinae

Hovervlieë van die familie Syrphidae boots dikwels ook Hymenoptera na, en sommige sirfiedspesies is met die eerste oogopslag moeilik om te onderskei van Bombyliidae, veral vir byvliegspesies wat nie 'n lang slang of lang, dun bene het nie. Sulke bombiliede kan steeds in die veld onderskei word deur anatomiese kenmerke soos:

- Hulle het gewoonlik 'n eweredig geboë of skuins gesig (sweefvlieë het dikwels prominente bolle van die gesigskutikula en/of snawel-tot-knop-agtige gesigsprojekte).

- Die vlerke het nie 'n "vals agterkant" nie en het dikwels groot donker gebiede met skerp grense of ingewikkelde kollepatrone (sweefvlerkies is dikwels helder of het 'n gladde kleur, en hulle are smelt agterna in 'n "vals rand" aan as om die ware agterkant van die vleuel te bereik).

- Die maag en borskas het selde groot glansoppervlaktes wat deur blootgestelde kutikula gevorm word (sweefvlieë het dikwels glansende kutikulêre liggaamsoppervlaktes).

Larwe Redigeer

Die larwes van die meeste byvlieë is van twee tipes. Diegene van die eerste tipe is langwerpig en silindries van vorm en het 'n metapneustiese of amfipneustiese trageale stelsel, voorsien van 'n paar buikspirale en moontlik 'n torakspaar. Die van die tweede tipe is stom en eucephalic en het een paar spirakels in die buik.

Volwassenes hou van sonnige toestande en droë, dikwels sanderige of rotsagtige gebiede. Hulle het kragtige vlerke en word tipies aangetref in vlug oor blomme of rus op die kaal grond blootgestel aan die son (kyk video) Hulle dra aansienlik by tot kruisbestuiwing van plante, en word die hoofbestuiwers van sommige plantspesies van woestynomgewings. Anders as die meerderheid glisifagiese dipterane, voed die byvlieë stuifmeel (waaraan hulle aan hul proteïenvereistes voldoen). 'n Soortgelyke trofiese gedrag kom voor onder die sweefvlieë, nog 'n belangrike familie van Diptera-bestuiwers.

Soos met sweefvlieë, is byevlieë in staat tot skielike versnelling of vertraging, alles behalwe momentumvrye hoëspoed-rigtingveranderings, uitstekende beheer van posisie terwyl hulle in die lug sweef, sowel as 'n kenmerkende versigtige benadering van 'n moontlike voeding of landing werf. Bombiliede word dikwels herken aan hul stewige vorms, aan hul swewende gedrag en aan die spesifieke lengte van hul monddele en/of bene terwyl hulle vorentoe buig in blomme. In teenstelling met sweefvlieë, wat net soos bye en ander bestuiwende insekte op die blom lê, voed die byvliegspesies wat 'n lang slang het, gewoonlik in die lug, soos Sphingidae, of terwyl hulle met hul voorpote aan die blom raak om te stabiliseer hul posisie - sonder om ten volle te land of op te hou ossillasie van die vlerke.

Spesies met korter snoekies land en loop egter op blomkoppe, en dit kan baie moeiliker wees om te onderskei van sweefvlieë in die veld. Soos opgemerk, spandeer baie byvliegspesies gereelde tydintervalle in rus op of naby die grond, terwyl sweefvlieë dit amper nooit doen nie. Dit kan dus insiggewend wees om te kyk hoe individue gevoed word en na 'n paar minute te kyk of hulle na die grondvlak beweeg. Dit is baie makliker om individue te voed as om met vlieë op die grond te kyk, aangesien laasgenoemde veral vinnig vlug met die eerste oogopslag van bewegende silhoeëtte of skaduwees wat nader kom.

Paringsgedrag is slegs by 'n handjievol spesies waargeneem. Dit kan wissel van redelik generiese swerm- of ongevraagde onderskepping in die lug, soos algemeen in baie Diptera is, tot hofmakerygedrag wat 'n konteksspesifieke vlugpatroon en vlerkslaghoogte van die mannetjie behels, met of sonder herhaalde proboscis-kontak tussen mannetjie en wyfie. [5] Mannetjies soek dikwels kleiner of groter openings op die grond, vermoedelik in die omgewing van blomplante of neshabitats wat waarskynlik aantreklik is vir wyfies. Hulle kan terugkeer na hul gekose baars of pleister na elke vreetbeurt of na agtervolging van ander insekte wat oorvlieg, of hulle kan eerder hul gekose gebied ondersoek terwyl hulle een of meer meter bokant die kaal pleister beweeg.

Swart wyfies soek neshabitatte van gashere en kan baie minute daaraan bestee om byvoorbeeld ingange van kleiner gate in die grond te ondersoek. By sommige spesies bestaan ​​hierdie gedrag uit swewende en herhaaldelike voorvoete-aanraking van die grond voor die rand van die ingang van die hol, vermoedelik om biochemiese leidrade oor die bouer se op te spoor, soos identiteit, onlangse besoeke, ens. byevlieg kan voortgaan om te land en sy posterior buik in die grond te plaas, en een of meer eiers aan die rand of in die nabyheid daarvan te lê. In nege subfamilies, insluitend die meer gereeld waarneembare Bombyliinae en Anthracinae, land die wyfies dikwels glad nie tydens gasheer -inspeksies nie, en gaan hulle eiers uit die middel van die lug los deur vinnig in die buik te swaai terwyl hulle oor die ingang van die holte sweef.

Hierdie merkwaardige gedrag het aan sulke spesies die algemene naam gegee Bomwerper vlieg, kan dit gesien word in Roy Kleuker se aanlyn videogreep in YouTube. [6] Vroulike vlieë met hierdie merkwaardige oviposisiestrategie het tipies 'n ventrale stoorstruktuur, bekend as a sandkamer aan die agterkant van die buik, wat gevul is met sandkorrels wat versamel is voor eierlegging. [7] [8] Hierdie sandkorrels word gebruik om elke eier net voor hul lugvrystelling te bedek, wat aanvaar word om die wyfie se doel sowel as die eier se oorlewingskanse te verbeter deur gewig by te voeg, eierdehidrasie te vertraag, biochemiese leidrade te masker wat kan sneller gasheergedrag soos nes skoonmaak of verlating - of 'n kombinasie van al drie.

Ten spyte van die groot aantal spesies van hierdie familie, word die biologie van jeugdiges van die meeste spesies swak verstaan. Die postembryonale ontwikkeling is van die tipe hypermetamorphic, met parasitoid of hyperparasitoid larwes. Uitsonderings is die larwes van Heterotropinae, waarvan die biologie soortgelyk is aan dié van ander Asiloidea, met rooflarwes wat nie hipermetamorfose ondergaan nie. Leërskare byevlieë behoort aan verskillende ordes insekte, maar is meestal onder die holometaboliese ordes. Hieronder tel Hymenoptera, veral die superfamilies van Vespoidea en Apoidea, kewers, ander vlieë en motte. Larwes van sommige spesies insluitend Villa sp. voed op eiersel van Orthoptera. Bombylius majeur larwes is parasities op alleenstaande bye insluitend Andrena. Miltsiekte anale is 'n parasiet van tierkewerlarwes, en A. trifasciata is 'n parasiet van die muurby. Verskeie Afrikaanse spesies van Villa en Thyridanthrax is parasitiese papies van tsetsevlieë. Villa morio is parasities op die voordelige ichneumonied spesies Banchus femoralis. Die larwes van Dipalta is parasities op leeus. [9]

Die gedrag van bekende vorms is soortgelyk aan dié van die larwes van Nemestrinoidea: die eerste instar larwe van is 'n planidium terwyl die ander stadiums 'n parasitiese habitus het. Die eiers word gewoonlik gelê in 'n toekomstige gasheer of op die nes waar die gasheer ontwikkel. Die planidium kom die nes binne en ondergaan veranderinge voordat hy begin voed.

Die familie is wêreldwyd (Palearktiese ryk, Nearctic realm, Afrotropiese ryk, Neotropiese ryk, Australasiese ryk, Oseaniese ryk, Indomalaja-ryk), maar het die grootste biodiversiteit in tropiese en subtropiese droë klimate. In Europa word 335 spesies onder 53 genera versprei.


Koöperatiewe uitbreiding: Insekplae, bosluise en plantsiektes

Cluster Fly

Klustervlieë lyk baie soos huisvlieë, maar hulle is gewoonlik groter en het geel hare op die toraks. Daar kan vier of meer generasies trossevlieë per seisoen wees.

Hierdie insekte is parasiete van erdwurms. Hoe meer erdwurms daar is, hoe groter is die kans dat trossevlieë volop is en 'n oorlas sal wees. Erdwurms is die volopste rondom ou plase en plekke waar mis opgehoop of geberg is. Hoë erdwurmpopulasies kom algemeen voor in grasgebiede, goeie grond en waar vog voldoende is.

In die laat somer soek volwassenes na beskermde oorwinteringsplekke soos solder, hokke, muurruimtes, los bas, gate in bome of ander skeure en holtes. Op grond van toevallige waarnemings, lyk dit asof trosse vlieë aangetrek word deur ligte geboue. As die sykant van die gebou styf is, het die vlieë minder kans om in die struktuur te kom.

Op warm dae in die vroeë winter, of wanneer huiseienaars binnenshuise hitte aanskakel, word die vlieë aktief en beweeg na die warmte. Dit gebeur blykbaar eers nadat hulle blootgestel is aan 'n tydperk van kouer temperature. Die vlieë kan 'n oorlas word in die middel van die winter, sowel as lente en herfs, wanneer warmte of lig hulle van hul wegkruipplekke na ander vertrekke van die huis lok. Gedurende die somer gaan trossevlieë ongesiens verby terwyl hulle na hul gasheer, die erdwurm, soek.

Bestuur

Die beste manier om trosvlieë binne te bestry, is om dit 'uit te bou'. Om hout oor krake te spyker of styf vas te hou, help om die jaarlikse opbou van die plaag te verminder. Om sifting oor solder-soffit-vents te plaas, is nog 'n stap wat jy kan neem. Jy kan ook die vlieë se aantrekkingskrag vir lig gebruik om jou solder van die wesens te ontslae te raak. Maak die soldervensters oop op sonnige dae. Die gebruik van 'n stofsuier is 'n vinnige en doeltreffende manier om 'n trosvliegpopulasie in die huis te verminder. Lokvalle, soos die “Cluster Buster ”, kan effektief wees as dit binne gebruik word.

Aërosolbespuitings wat resmetrien of piretriene bevat, is beskikbaar vir gebruik in huise. Insekstroke of geen-pesstroke wat Vapona bevat, is ook nuttig. Volg die etiketaanwysings en neem voorsorgmaatreëls in ag. Gebruik die stroke in solder, vensterrame, spasies rondom lamellen, onder dakrand en kruisings van mure. Buite rusgebiede kan middel tot einde Augustus met permetrien bespuit word. Soek hierdie materiaal op die lys van aktiewe bestanddele op produketikette. Wees bewus daarvan dat sommige spuitformulerings sylyn kan vlek. Baie mense huur die diens van 'n professionele plaagbestrydingsonderneming om 'n chemiese versperring aan die buitekant van hul huis aan te bring om te voorkom dat die trosse in die huis binnedring.

Aan die positiewe kant byt trossevlieë nie mense of diere nie, dit word nie deur vullis aangetrek nie, en dit is 'n goeie aanduiding van 'n erdwurm wat nie te ver weg is nie!

By die gebruik van plaagdoders

VOLG ALTYD ETIKETAANWYSINGS!

Plaagbestuurseenheid
Koöperatiewe Uitbreiding Diagnostiese en Navorsingslaboratorium
17 Godfrey Drive, Orono, ME 04473
1.800.287.0279 (in Maine)

Inligting in hierdie publikasie word slegs vir opvoedkundige doeleindes verskaf. Geen verantwoordelikheid word aanvaar vir enige probleme wat verband hou met die gebruik van genoemde produkte of dienste nie. Geen onderskrywing van produkte of maatskappye word bedoel nie, en ook nie kritiek op naamlose produkte of maatskappye word geïmpliseer nie.

Bel 800.287.0274 (in Maine), of 207.581.3188, vir inligting oor publikasies en programaanbiedings van University of Maine Cooperative Extension, of besoek extension.umaine.edu.

Die Universiteit van Maine is 'n EEO/AA -werkgewer en diskrimineer nie op grond van ras, kleur, godsdiens, geslag, seksuele oriëntasie, transgenderstatus, geslagsuitdrukking, nasionale oorsprong, burgerskapstatus, ouderdom, gestremdheid, genetiese inligting of veterane nie status in indiensneming, onderwys en alle ander programme en aktiwiteite. Die volgende persoon is aangewys om navrae rakende nie-diskriminasiebeleid te hanteer: Sarah E. Harebo, direkteur van gelyke geleenthede, 101 North Stevens Hall, University of Maine, Orono, ME 04469-5754, 207.581.1226, TTY 711 (Maine Relay Stelsel).


Watter soort vlieg is dit? - Biologie

Die horing vlieg, Haematobia irritans irritans (Linnaeus), is een van die ekonomies belangrikste plae van beeste wêreldwyd. Dit is 'n verpligte ektoparasiet wat bloed voed, wat byna uitsluitlik op beeste voed. Net in die Verenigde State word jaarliks ​​honderde miljoene dollars aan verliese toegeskryf aan die horingvlieg, terwyl miljoene ekstra jaarliks ​​aan insekdoders bestee word om die getal horingsvlieë te verminder (Kunz et al. 1991, Byford et al. 1992, Cupp et al. . 1998).

Figuur 1. Dorsale aansig van 'n volwasse horingvlieg, Hematobie irritans irritans (Linnaeus). Foto deur Dan Fitzpatrick, Universiteit van Florida.

Sinoniem (Terug na bo)

Ontdek irritante Linnaeus, 1758
Haematobia cornicola Williston, 1889
Haematobia serrata Robineau-Desvoidy, 1830
Lyperosia meridionalis Bezzi, 1911
Lyperosia rufifrons Bezzi, 1911

Verspreiding (Terug na bo)

Die horingvlieg is in 1887 (Bruce 1938) vanaf Frankryk na Noord-Amerika bekendgestel. Hierdie plaag kom nou in die hele Amerikas voor, sowel as in Europa, Asië en die nie-tropiese streke van Afrika.

Beskrywing (Terug na bo)

Volwassenes: Die volwasse horingvlieë het bruingrys of swart liggame en is blink, met effens oorvleuelende vlerke wat plat oor die buik gehou word. Die liggaam is 3,5 tot 5 mm lank, of ongeveer die helfte van die grootte van die gewone huisvlieg, Musca domestica Linnaeus. Die kop het klein, bruinrooi antennas wat afwaarts wys. Die toraks het twee parallelle strepe op die dorsale oppervlak, net agter die kop. Beide manlike en vroulike horingvlieë het deurdringende monddele en voed uitsluitlik op bloed.

Figuur 2. Sy -aansig van 'n volwasse horingvlieg, Hematobie irritans irritans (Linnaeus). Foto deur Dan Fitzpatrick, Universiteit van Florida.

Horingvlieë verskil van 'n ander groot beespes, die stalvlieg (Stomoxys calcitrans (Linnaeus)), op verskeie maniere. Alhoewel albei vlieë 'n deurdringende proboscis het, het horingvlieë langer maksillêre palpi relatief tot die proboscis. Horingvlieë is ook kleiner (5 mm lank), en het geen groot patrone aan die dorsale (agter) kant van hul buik nie, terwyl stabiele vlieë 7 tot 8 mm lank is en 'n "checkerboard"-voorkoms van die bokant van die buik het. Hoornvlieë moet ook eiers lê in ongestoorde, vars mis, terwyl stabiele vlieë selde eiers in vars mis lê, eerder as mis-strooimengsels, urine-geweekte voer en strooi, voedingsafvalplekke, grashakels en ronde hooibaalvoeding. webwerwe.

Figuur 3. Sy-aansigte van horingvlieg, Hematobie irritans irritans (Linnaeus) (bo) en stabiele vlieg, Stomoxys calcitrans (Linnaeus) (onder). Die maksillêre palpi van die horingvlieg is amper so lank soos sy proboscis, terwyl die stabiele vlieg se palpi aansienlik korter as sy proboscis is. Foto's deur Dan Fitzpatrick (horingvlieg), Jerry Butler (stalvlieg), Universiteit van Florida.

Eiers: Horingvliegeiers is bruin, geel of wit wanneer dit eers gelê word, en dan donkerder tot 'n rooibruin kleur voor uitbroei. Eiers is ovaal en konkaaf aan die een kant en konveks aan die ander kant, en is ongeveer 1,2 mm lank.

Figuur 4. Eier (onder) en derde instarlarwe (boonste kop links) van 'n horingvlieg, Hematobie irritans irritans (Linnaeus). Foto deur Dan Fitzpatrick, Universiteit van Florida.

Larwes: Die nuut uitgebroeide maaiers is wit en ongeveer 1,5 mm lank met 'n skraal puntige kop. Die spirakels, of openinge vir asemhaling, verskyn as swart inkepings aan die einde van die buik.

Figuur 5. Die spiraalvormige plate van 'n derde instarlarwe (bo) en 'n papie (onderkant) van die horing vlieg, Hematobie irritans irritans (Linnaeus). Foto deur Dan Fitzpatrick, Universiteit van Florida.

Poppe: Die papies is eers 3 tot 4 mm lank en wit, die buitenste papiebedekking sklerotiseer, of verhard, en word donker rooibruin oor 'n paar uur.

Figuur 6. Leë papiekaste van die horingvlieg, Hematobie irritans irritans (Linnaeus). Sien 'n volwasse opkomsgat links bo. Foto deur Dan Fitzpatrick, Universiteit van Florida.

Lewensiklus (Terug na bo)

Beesmis is die vereiste habitat vir larwe-ontwikkeling, en volwassenes voed hoofsaaklik op beeste, met wyfies wat hul gasheer net lank genoeg verlaat om eiers in vars mis te lê. Die eiers broei tussen een tot twee dae nadat hulle gelê is (Foil en Hogsette 1994). Deur op die vars mis te voed, ontwikkel larwes in drie tot vier dae in agt dae voordat hulle 'n volwasse grootte van 6,5 tot 7,5 mm bereik (Lysyk 1991, 1992). Verpopping vereis gewoonlik ses tot agt dae vir volle rypwording (Foil en Hogsette 1994). Die tyd wat nodig is om die lewensiklus van 'n horingvlieg te voltooi, is tussen 10 en 20 dae, afhangende van die temperatuur en tyd van die jaar (Campbell 2006).

Wanneer die volwassene uit die papiekas kom, neem dit ongeveer drie dae om volwasse te wees van die voortplantingsorgane wat eierproduksie moontlik maak. Die volwasse vlieë begin drie tot vyf dae na opkoms paring, en volwasse wyfies begin eiers lê drie tot agt dae na opkoms. ’n Wyfiehoringvlieg lê gemiddeld 78 eiers gedurende haar volwasse leeftyd van ongeveer ses tot sewe dae, maar kan tot 100-200 eiers lê (Krafsur en Ernst 1986). Mannetjie- en wyfiehoringvlieë voed slegs op bloed tydens hul volwasse stadium, terwyl ander bloedvoedende vlieë, soos die stalvlieg, nektar sal vreet.

Alhoewel horingvlieë gewoonlik gedurende die winter in die meeste subtropiese en gematigde gebiede as poppe oorwinter as winterslaap (Mendes en Linhares 1999), is horingvliegbevolkings 'n steurnis die hele jaar deur vir beeste in die suidooste van die Verenigde State, met relatief laer bevolkings in die winter (Koehler et al. 2005). Vliegbevolkings bereik 'n hoogtepunt in die vroeë somer, en neem dan af namate die weer warm en droog word. In die herfs neem bevolkings tipies weer toe soos temperature daal en reënval toeneem, en val weer af na September of Oktober, soos laat herfs en vroeë winter temperature intree (Baldwin et al. 2005).

Gashere (terug na bo)

Hoornvlieë het hierdie naam gekry vanweë hul gewoonte om by die horings van beeste te groepeer, hoewel hulle gewoonlik verkies om op die rug van beeste te lê gedurende die koeler dele van die dag en op die maag gedurende die warmer deel van die dag. Dit is bekend dat hulle voed op perde, honde, varke en soms mense. Hulle het egter 'n goed gedokumenteerde noue assosiasie met beeste en bly gewoonlik op of naby beeste gedurende hul hele lewensiklus.

Ekonomiese belangrikheid (terug na bo)

Die horingvlieg word beskou as een van die mees ekonomies verwoestende plae van die vleisbeesbedryf in die Verenigde State (Byford et al. 1992). Dit veroorsaak jaarlikse verliese van tussen VS$700 miljoen en $1 miljard, terwyl ’n bykomende VS$60 miljoen jaarliks ​​aan insekdoders bestee word om besmetting te beheer (Kunz et al. 1991, Byford et al. 1992, Cupp et al. 1998).

As gevolg van horingvlieë se voergedrag en die groot aantal vlieë wat op die diere voorkom, gebruik beeste 'n groot mate van energie in verdedigende gedrag. Dit lei tot verhoogde hart- en asemhalingsnelheid, verminderde weidingstyd, verminderde voedingsdoeltreffendheid en verminderde melkproduksie by koeie, wat kan lei tot verminderde speengewigte (Byford et al. 1992). Uitgebreide horingvliegvoeding kan ook veehuide ernstig beskadig, wat lei tot 'n swakker kwaliteit leer (Pruett et al. 2003).

Daar word gereeld in groot getalle horingvlieë by vleisbeeste aangemeld, met duisende vlieë op individuele diere. Alhoewel die gemiddelde maaltydgrootte slegs 1,5 mg, of 10 en mikroL, bloed per voeding is (Kuramochi en Nishijima 1980), neem elke vlieg tussen 24 en 38 bloedmaaltye per dag (Foil en Hogsette 1994). Daarom kan die groot aantal vlieë wat 'n dier aantas, sowel as die aantal maaltye wat daagliks deur elke vlieg geneem word, aansienlike bloedverlies tot gevolg hê (Harris et al. 1974).

Figuur 7. 'N Horingwolk vlieg (die talle wit spikkels), Hematobie irritans irritans (Linnaeus), voed op koeie. Foto deur Lane Foil, Louisiana State University.

Die horingvlieg is ook 'n vektor van verskeie patogene. 'N Filariumaalwurm, Stephanofilaria stilesi Chitwood veroorsaak stephanofilariasis, 'n dermatitis wat gekenmerk word deur areas van korsvel aan die onderkant van beeste. Word gewoonlik aangetref op beeste in die westelike en suidwestelike Verenigde State en Kanada, S. stilesi kan tot 80 tot 90% van 'n kudde beïnvloed (Hibler 1966). Produksieverliese wat verband hou met hierdie aalwurm of ander nadelige reaksies by beeste, is egter nie aangemeld nie.

Horingvlieë is ook in staat om verskeie te vektor Staphylococcus spp. bakterieë wat mastitis veroorsaak, of infeksie van die spene by melkkoeie, veral in die somermaande (Owens et al. 1998, Gillespie et al. 1999). Benewens die speenskade wat hulle veroorsaak, kan voedende vlieë die bakterieë in oop wonde inbring, wat aansienlike infeksie veroorsaak (Edwards et al. 2000). Beesprodusente kan gevalle van mastitis verminder deur horingvlieggetalle te bestuur (Nickerson et al. 1995, Edwards et al. 2000).

Bestuur (Terug na bo)

Statiese drempels is vasgestel, gebaseer op die aantal horingvlieë per dier, om te bepaal of die implementering van vliegbestuur ekonomies noodsaaklik is. Kalwers en melkbeeste kan nie 'n groot aantal vlieë onderhou sonder om meetbare skade op te doen nie 50+ vlieë per lakterende melkkoei word as van ekonomiese belang beskou. Vleiskoeie kan tot 200 vlieë per dier verdra, terwyl bulle die grootste aantal horingvlieë kan verdra (Schreiber et al. 1987, Hogsette et al. 1991).

Chemiese beheer: Insekdoder-geïmpregneerde oorplaatjies het 'n gewilde en doeltreffende metode geword vir die bestuur van horingvliegpopulasies, as gevolg van die koms van laekoste, hoogs aanhoudende piretroïed- en organofosfaatplaagdoders (Szalanski et al. 1991). In kuddes wat deur horingvlieë geraak word, het verse met oorplaatjies tot 50% meer gewig per dag opgetel as wat nie -gemerkte kontrole verse gedoen het (Sanson et al. 2003). Meer onlangs word insekdoders wat in stortings geformuleer word, toenemend gebruik. Though insecticide technology has been largely, if not exclusively, relied upon for managing horn flies, resistance to many of the insecticides has been widely reported and demonstrated to occur through several known mechanisms, including target site insensitivity and thorough metabolic detoxification of insecticides (Szalanski et al. 1991). Therefore, use of an integrated pest management approach that utilizes several methods in tandem, will allow cattle producers to more effectively reduce adult and larval horn fly populations. A rotation of chemicals with different active ingredients and different application techniques is considered the best approach to managing this fly.

The use of backrubbers and dustbags, which physically apply insecticides to cattle when they brush up against them, can aid control efforts when they are placed in locations where the cattle are forced to brush against them. When insecticide is reapplied to the backrubbers and dustbugs every two to three weeks, they are reasonably effective for managing horn flies (Baldwin et al. 2005).

Feed-through applications, where certain pesticides are mixed into cattle feed, result in the chemical passing through the cattle's digestive tract and hence into the manure. Endectocides also have gained popularity with cattle farmers in recent years under a variety of trade names. These pesticides are injected or topically applied to and absorbed by cattle and are excreted unaltered in the manure. The pesticide remains in the dung and can significantly reduce immature horn fly numbers for up to two months after application (Miller et al. 1981, Lysyk and Colwell 1996, Floate et al. 2001). Another approach to this technique, the bolus, provides several weeks worth of control from a single treatment. Boluses are essentially long-lasting pills that are deposited into the animal's stomach, where they slowly release the insecticide into the manure. Both of these techniques kill only the immature stages of the horn fly and do not affect the adult flies feeding on the animals. Therefore, because the adult flies are not killed, and because new adult flies may emigrate from nearby untreated herds, feed-throughs are not considered cure-all treatments (Baldwin et al. 2005).

Biological insecticides also have gained popularity as alternatives to pyrethroid or organophosphate pesticides. Bacillus thurigiensis Berliner (Bt), a well-known bacterium used as a biological insecticide, is effective against a range of insect pests. Although there are no products for horn fly control on the market containing Bt, recent research has indicated that several strains of Bt are highly toxic to horn fly larvae (Lysyk et al. 2010).

Mechanical control: An old, and perhaps effective, non-chemical control tactic that has been critically evaluated in recent years is the walk-through horn fly trap. These traps utilize the horn fly's reluctance to enter a darkened building to remove the flies from the animals and then trap or kill the flies with sticky traps or electrocution as they leave the animals. More modern designs of this technique are reported to provide up to an 85% reduction of fly numbers (Watson et al. 2002).

Figuur 8. Cow using walkthrough fly trap to remove horn flies, Haematobia irritans irritans (Linnaeus). Photograph by Phillip Kaufman, University of Florida.

Biologiese beheer: A number of natural predators, parasitoids and competitors have been examined as agents for suppression of horn fly numbers. Dung beetles of the family Scarabaeidae, as well as other predaceous beetles of the families Staphylinidae and Histeridae, are important natural predators of larval horn flies in the manure (Hu and Frank 1996, Oyarzún et al. 2008). Interestingly, the red imported fire ant, Solenopsis invicta Buren, also reduces immature horn fly numbers in cattle dung pats as well through predator activity (Summerlin et al. 1984), but may cause additional problems by killing the other predators and by stinging the cattle, particularly calves (Hu and Frank 1996).

Figuur 9. Onthophagous gazella Fabricius, a common scarab beetle in Florida, on a cattle dung pat. This and other dung beetles bury large portions of the manure and accelerate manure drying, creating competition for the larvae of the horn fly, Haematobia irritans irritans (Linnaeus), that live in the pat. Photograph by Phillip Kaufman, University of Florida.

Parasitoid wasps of the families Pteromalidae and Chalcididae, which are not pests of people but naturally attack horn flies, have been assessed as potential control agents for use against horn flies in the United States (Geden et al. 2006). These wasps, including Spalangia en Muscidifurax spp., lay their eggs in fly pupae, and the wasps' offspring feed internally on the fly and eventually kill it. To date, horn fly control has not been accomplished solely using naturally-occurring or augmentative biological control, principally due to the widely distributed cattle dung pats (and therefore horn fly pupae) and difficulty in getting released wasps to these sites. Cattle producers are encouraged to protect these natural enemies of the horn fly, as without them, populations would assuredly be much higher.

Figuur 10. Spalangia sp. wasp parasite probing on a fly puparia. A female stings a pupa, lays a single egg, and the wasp larva feeds on and kills the pupating fly. Foto deur Jerry Butler, Universiteit van Florida.

Geselekteerde verwysings (Terug na bo)

  • Baldwin JL, Foil LD, Hogsette JA. (May 2005). Important fly pests of Louisiana beef cattle. LSUAgCenter. (14 April 2020)
  • Bruce WG. 1938. A practical trap for the control of horn flies on cattle. Journal of the Kansas Entomological Society 11: 88-93.
  • Byford RL, Craig ME, Crosby BL. 1992. A review of ectoparasites and their effect on cattle production. Journal of Animal Science 70: 597-602.
  • Campbell JB. 1993. Horn fly control on cattle. University of Nebraska-Lincoln Extension Publication. (14 April 2020)
  • Cupp EW, Cupp MS, Ribeiro JMC, Kunz SE. 1998. Bloodfeeding strategy of Haematobia irritans (Diptera: Muscidae). Journal of Medical Entomology 35: 591-595.
  • Edwards JF, Wikse SE, Field RW, Hoelscher CC, Herd DB. 2000. Bovine teat atresia associated with horn fly (Haematobia irritans irritans (L))-induced dermatitis, Veterinary Pathology 37: 360-364.
  • Floate KD, Spooner RW, Colwell DD. 2001. Larvicidal activity of endectocides against pest flies in the dung of treated cattle. Medical and Veterinary Entomology 15: 117-120.
  • Foil LD, Hogsette JA. 1994. Biology and control of tabanids, stable flies and horn flies. Revue Scientifique et Technique 13: 1125-1158.
  • Geden CJ, Moon RD, Butler JF. 2006. Host ranges of six solitary filth fly parasitoids (Hymenoptera: Pteromalidae, Chalcididae) from Florida, Eurasia, Morocco, and Brazil. Environmental Entomology 35: 405-412.
  • Gillespie BE, Owens WE, Nickerson SC, Oliver SP. 1999. Deoxyribonucleic acid fingerprinting of Staphylococcus aureus from heifer mammary secretions and from horn flies. Journal of Dairy Science 82: 1581-1585.
  • Harris RL, Miller JA, Frazar ED. 1974. Horn flies and stable flies: feeding activity. Annals of the Entomological Society of America 67: 891-894.
  • Haufe WO. 1982. Growth of range cattle protected from horn flies Haematobia irritans by ear tags impregnated with fenvalerate. Canadian Journal of Animal Science 62: 567-573.
  • Hibler CP. 1966. Development of Stephanofilaria stilesi in horn fly. Journal of Parasitology 52: 890-898.
  • Hogsette JA, Prichard DL, Ruff JP. 1991. Economic effects of horn fly (Diptera: Muscidae) populations on beef cattle exposed to three pesticide treatment regimes. Journal of Economic Entomology 84: 1270-1274.
  • Hu GY, Frank JH. 1996. Effect of the red imported fire ant (Hymenoptera: Formicidae) on dung-inhabiting arthropods in Florida. Environmental Entomology 25: 1290-1296.
  • Kerlin RL, Allingham PG. 1992. Acquired immune response of cattle exposed to buffalo fly (Haematobia irritans exigua). Veterinary Parasitology 43: 115-129.
  • Koehler, PG, Butler JF, Kaufman PE. (December 2005). Horn flies. EDIS. (no longer available online).
  • Krafsur ES, Ernst CM. 1986. Phenology of horn fly populations (Diptera: Muscidae) in Iowa, USA. Journal of Medical Entomology 23: 188-195.
  • Kuramochi K, Nishijima Y. 1980. Measurement of the meal size of the horn fly, Haematobia irritans (L.) (Diptera: Muscidae), by the use of amaranth. Applied Entomological Zoology 15: 262-269.
  • Lysyk TJ. 1991. Use of life-history parameters to improve a rearing method for horn fly, Haematobia irritans irritans (L) (Diptera, Muscidae), on bovine hosts. Canadian Entomologist 123: 1199-1207.
  • Lysyk TJ. 1992. Effect of larval rearing temperature and maternal photoperiod on diapause in the horn fly (Diptera, Muscidae). Environmental Entomology 21: 1134-1138.
  • Lysyk TJ, Colwell DD. 1996. Duration of efficacy of diazinon ear tags and ivermectin pour-on for control of horn fly (Diptera: Muscidae). Journal of Economic Entomology 89: 1513-1520.
  • Lysyk TJ, Kalischuk-Tymensen LD, Rochon K, Selinger LB. 2010. Activity of Bacillus thuringiensis isolates against immature horn fly and stable fly (Diptera: Muscidae). Journal of Economic Entomology 103: 1019-1029.
  • Mendes J, Linhares AX. 1999. Diapause, pupation sites and parasitism of the horn fly, Haematobia irritans, in south-eastern Brazil. Medical and Veterinary Entomology 13: 180-185.
  • Miller JA, Kunz SE, Oehler DD, Miller RW. 1981. Larvicidal activity of Merck MK-933, an avermectin, against the horn fly, stable fly, face fly, and house fly. Journal of Economic Entomology 74: 608-611.
  • Nickerson SC, Owens WE, Boddie RL. 1995. Mastitis in dairy heifers - initial studies on prevalence and control, Journal of Dairy Science 78: 1607-1618.
  • Owens WE, Oliver SP, Gillespie BE, Ray CH, Nickerson SC. 1998. Role of horn flies (Haematobia irritans) in Staphylococcus aureus-induced mastitis in dairy heifers. American Journal of Veterinary Research 59: 1122-1124.
  • Oyarzún, MP, Quiroz A, Birkett MA. 2008. Insecticide resistance in the horn fly: alternative control strategies. Medical and Veterinary Entomology 22: 188-202.
  • Pruett JH, Steelman CD, Miller JA, Pound JM, George JE. 2003. Distribution of horn flies on individual cows as a percentage of the total horn fly population. Veterinary Parasitology 116: 251-258.
  • Sanson DW, DeRosa AA, Oremus GR, Foil LD. 2003. Effect of horn fly and internal parasite control on growth of beef heifers. Veterinary Parasitology 117: 291-300.
  • Schreiber ET, Campbell JB, Kunz SE, Clanton DC, Hudson DB. 1987. Effects of horn fly (Diptera: Muscidae) control on cows and gastrointestinal worm (Nematode: Trichostrongylidae) treatment for calves on cow and calf weight gains. Journal of Economic Entomology 80: 451-454.
  • Summerlin JW, Petersen HD, Harris RL. 1984. Red imported fire ant (Hymenoptera: Formicidae): effects on the horn fly (Diptera: Muscidae) and coprophagous scarabs. Environmental Entomology 13: 1405-1410.
  • Szalanski, AL, Black WC, Broce AB. 1991. Esterase staining activity in pyrethroid-resistant horn flies (Diptera: Muscidae). Journal of the Kansas Entomological Society 68: 303-312.
  • Watson DW, Stringham SM, Denning SS, Washburn SP, Poore MH, Meier A. 2002. Managing the horn fly (Diptera: Muscidae) using an electric walk-through fly trap. Journal of Economic Entomology 95: 1113-1118.

Webontwerp: Don Wasik, Jane Medley
Publication Number: EENY-490
Publication Date: April 2011. Reviewed: April 2020.


What kind of fly is this? - Biologie

LET WEL: Also consult the grading rubric when writing your paper. If the rubric contradicts any of the guidelines presented on this page, the rubric takes precedence over this page.

The text should be double-spaced. Information in tables and the Literature Cited can be single-spaced.

NOTE that you are not writing all of the sections of a primary literature paper. For example, you will NOT write an Introduction or a Materials and Methods sections. However, to help you better understand how your paper should sound, please follow this link to a sample Materials and Methods section. Read this document and try to mimic its quality and tone while writing the required sections for your paper.

Watch plagiarism: copying someone else's words, even if you reference their work, is onwettig. You must put everything into your own words, and then if those ideas that you are describing are someone else's, you also must cite the reference from which those ideas came. Do not quote someone's words as you might do in a history or literature paper scientists don't do that in standard research papers.

Consult the Communication in Biological Sciences website for two methods of citing references, choose one of those two, and consistently and correctly use them throughout your paper.

However, YOU should read through both the initial and final drafts of your paper before handing them in. Critiquing your own work is very difficult, but it is a skill that will serve you well no matter what you end up doing.

Keep in mind that the writing and flow of your paper is important. Simply stringing together all of the items listed below for each section is NOT ENOUGH.


What kind of fly is this? - Biologie

This is the fly that really gets up your nose in the middle of winter. there you are sat in your conservatory on a beautiful sunny day in early January..the sun is really quite warm under the glass. when to your horror you notice that there are numerous flies walking around the panes which make up the roof of the conservatory. "can't be" you say to your self, it's winter. Well sorry folks but it can be and it's Cluster fly.

Biologie:
These insects, sometimes called "attic flies", often become pests in homes. They usually appear in late fall or early winter and again on warm, sunny days in early spring. They buzz around the home and gather in large numbers at windows, often in rooms that are not regularly used. The cluster fly is a little larger than the common housefly and moves sluggishly.

It can be recognised by the short, golden coloured hairs on its thorax, the part of the body to which the legs and wings are attached. The larvae, or maggots, of cluster flies develop as parasites in the bodies of earthworms. The adult flies emerge in late summer and early autumn and seek protected places to spend the winter. In many cases, this is within the walls, attics and basements of homes.

A pair of Cluster Flies

Insect screens on windows offer no protection from the flies because they crawl in the home through small openings in the walls of the building. These same overwintering flies get into rooms during the winter and spring months entering through window pulley holes, around the baseboards and through other small openings in walls.

Treatment:
As these type of flies tend to overwinter in roof-spaces, a good treatment is to release insecticidal smoke generators into the roof space. As the smoke settles a very thin film of insecticidal dust covers all the surfaces and when the fly cleans itself it ingests the insecticide and dies. Depending on the size of the roof-space depends on the number of generators used. Safety aspects should be observed

1. Ring the Fire Brigade . there will always be some passer-by who will see smoke coming out of your roof slates and will report the fact without asking you first. if a fire engine turns up for no reason you will be charged for the false call-out.
2. Always
sit the smoke generators on a slate or a tin lid or something which is fire proof. We don't want to tell the fire brigade not to come and then end up having to call them anyway.
3.
If you are using more than one generator, make sure that you ignite the ones furthest from the roof access first you don't want to breathe the smoke which is emitted. and you want to be able to see your way back to the roof access . REMEBER SAFETY AT ALL TIMES.

As well as the smoke treatment, there other treatments which will help. Again these must be carried out with a total regard for safety. people tend to forget that when they use fly spray they should work their way out of the room, leaving that room for a least an hour to allow the fine droplets to sink to the floor. Experiments have shown that droplets will hang in the air for at least 45 minutes, leaving 15 minutes as an added safety factor. The same applies if you use dusting powders, which are very fine, like talcum powder, and will also hang in the air. You must remember that if spray kills flies, then it isn't going to be particularly healthy if you breathe it. IF YOU HAVE LUNG COMPLAINTS OR PROBLEMS LIKE ASTHMA THEN DON'T HANDLE OR USE INSECTICIDES IN WHATEVER FORMS.

1. You can treat the glass windows in your conservatory or whatever, but no matter what anyone tells you there will be a slight smear effect, even with the cleanest of insecticides. What you can do is to spray the frames only which will sometimes be enough.
2. If you have sash windows. you know those windows which slide up and down and have pulley wheels at the top. well this is a favourite access point for the flies as they come out of the cavity wall. Treat these types of places with dusting powder. DON'T FORGET TO WEAR A MASK. and leave the treated room for at least an hour.
3. If your house has South facing external walls which are painted white, or are very light coloured, you will probably find that a lot of flies will bask on these walls as the light colour will reflect the heat nicely and insects need heat to be really active. You can treat these walls with an insecticide as well but realistically you would need a gallon sprayer to do the job. This would also cut down on the problems experienced in the house. BUT REMEMBER. if you spray insecticides externally not only will you kill the flies, but none target species as well.
4. If the problem is bad then you should really employ a pest control company. Here again you need to be careful, don't let them talk you into a contract for 94 visits a year. a little exaggeration. usually a problem site can be kept under control with 4 visits per annum and at the most 6.
5. If you are unsure then go back to the main fly page and email me. please ensure that you provide as much information as you can.

Back to main fly page


Flesh Flies

Adult flesh flies are rarely problems as disease carriers, and pose little threat to human or livestock health. These pests eat nasty stuff, but they do not bite people.

Larvae and Disease

Flesh fly larvae have been known to burrow from wounds into the healthy flesh of livestock. Some species can cause intestinal infections in humans who consume food contaminated with flesh fly larvae. The pests can transmit organisms they pick up at their unsanitary feeding sites. Some examples of diseases transmitted by flesh flies include:

The presence of this pest and their preferred sources of food can add to the time and efforts that must be directed to removing decaying matter from the homeowner&rsquos property.

Signs Of Infestation

If flies are developing inside, you may see a large number of them suddenly appear. When pests such as rodents, birds, or other wildlife infest homes and die in wall voids or attics, odors and the appearance of flesh flies are often the first signs of a problem.

How Do I Get Rid of Flesh Flies?

Flesh fly prevention and control comprises both exterior and, if necessary, interior procedures. The first step in a control program is to contact your pest management professional for assistance. Your pest management professional will positively identify the offending pest, conduct an inspection and then develop an integrated pest management plan (IPM) to resolve the problem. The key components of a flesh fly IPM plan include:

  • Identifikasie: Since not all flies have the same behavior and habitat, it is important to correctly identify the offending insect so that an effective and efficient IPM program can be put into place.
  • Inspection: Your pest management professional&rsquos inspection will provide the information and observations needed to develop the proper IPM plan.
  • Sanitasie: Keep the property clean and get rid of all sources that provide flesh flies a suitable development habitat.
  • Uitsluiting: Seal and repair screens, holes, gaps, and any other entryway that flesh flies may use to enter the home.
  • Traps: Illuminate traps to attract and capture flies.
  • Baits: Using chemical products to treat fly resting places, using chemical fly baits and using aerosol products.

Behavior, Diet, & Habit

These pests are sometimes among the first insects to arrive at a dead animal carcass and are similar to blow flies in biology and habits. Also, forensic investigators may use the development of flesh fly larvae in a carcass or corpse to help determine time of death.

Wat eet hulle?

These materials attract flesh flies and provide the ideal food source for the pests as well as a place to lay their eggs:

  • Carrion
  • Decaying feces
  • Organic waste
  • Blow fly larvae larvae
  • Grasshopper nymphs

Not commonly found in the home, flesh flies frequently infest industrial buildings like meat processing and packing facilities. Adult flesh flies don't bite humans, but they do feed on liquid substances, and may infest wounds, carrion, and excrement.

Geographic Range

Flesh flies are worldwide in distribution and are found in most regions of the United States.

Lewens siklus

While the life cycle of flesh flies varies by species and location, generally the flies overwinter in their pupal stage within temperate climates and emerge as adults in the spring. Soon after becoming adults, they mate and the female flesh fly may lay eggs. More likely she will deposit 20-40 larvae that have hatched within her body which she directly lays on the carrion, feces, or rotting plant materials. A single female can produce hundreds of eggs during her lifetime.

Flesh fly larvae feed for 3 or 4 days and become pupae that burrow into nearby soil. After about 10 to 15 days, they will emerge as adults. Flesh flies go through several generations each year. Depending on the species, eggs may hatch within 24 hours and the entire life cycle of the fly may be completed within 1-2 weeks.


Why fruit flies are so crucial to research

The world around us is full of amazing creatures. My favorite is an animal the size of a pinhead, that can fly and land on the ceiling, that stages an elaborate (if not beautiful) courtship ritual, that can learn and remember… I am talking about the humble fruit fly, Drosophila melanogaster. By day, a tiny bug content to live on our food scraps. By night, the superhero that contributes to saving millions of human lives as one of the key model systems of modern biomedical research.

Fruit flies entered the laboratory almost through the back window a little more than 100 years ago. The excitement was still fresh after rediscovery of Gregor Mendel’s work on the genetics of peas in 1900. It was an outlandish notion at the time that Mendel’s simple laws of inheritance could apply even to animals. To test this revolutionary idea, scientists were looking for an animal they could keep easily in the lab and reproduce in large numbers.

Thomas Hunt Morgan struck gold when he decided to use the fruit fly as a model. He and his students pushed this prolific little animal to great success. They furthered Mendel’s work to discover that genes are located on chromosomes, where they are arranged, in Morgan’s words, like “beads on a string” – a breakthrough that was recognized with the Nobel prize in 1933. With the success of Morgan’s “flyroom,” the humble fruit fly was set on its way to becoming one of the leading models in modern biology, contributing vast amounts of knowledge to many areas – including genetics, embryology, cell biology, neuroscience. Additional fly Nobel prizes were awarded in 1946, 1995, 2006 and 2011.

A tiny fly stands in for us in basic research

If you ask a geneticist, humans are brothers to mice and just first cousins to flies, sharing 99% and 60% of protein-coding genes, respectively. Our anatomy and physiology are also related, so that we can use these laboratory animals to design powerful experiments, hoping what we find will be of significance to animals and humans alike. It’s undeniable that the research on animal models – such as nematodes, flies, fish and mice – has contributed immensely to what we know about our own body and as a result is helping us tackle the diseases that plague us. On this front, the services of the fruit fly will certainly be required for some time to come.

A recent renaissance in neuroscience is also bringing the fly to the forefront of our efforts to understand the brain. One of the things we least understand is how our own brain produces our emotions and behavior. Scientists are naturally attracted by the unknown, making this one of the most exciting open frontiers in biology. Perhaps, our brain, the ultimate Narcissus, cannot resist the temptation to study itself. Can the humble fly really contribute to our understanding of how our own brain works?

The fruit fly brain is a miracle of miniaturization. It deals with an incredible flow of sensory information: an obstacle approaching, the enticing smell of overripe banana, a hot windowsill to stay away from, a sexy potential mate. And it does this literally on-the-fly, as the little marvel is computing suitable trajectories around the room. Yet the fly brain is composed of only about 100,000 neurons (compared with nearly 100 billion for human beings) and can fit easily through the eye of the finest needle.

The relatively small number of cells is a key advantage for brain mapping, and large efforts are under way to label, trace and catalog every single neuron in the fly brain. Combine this with the unique wealth of information on the genetics of this little animal, and you will see how we are now able to design incredibly powerful experiments in which we alter the “software” (that is, introduce specific changes in the genome) to create animals with unique and predictable changes in the “hardware” (the brain circuits) to ask questions about brain function.

Following this playbook are recent experiments demonstrating, for example:

  • how sleep enhances memory formation (yes, even in flies!)
  • how a few sexually dimorphic neurons in the male fly brain promote male-vs-male fights
  • how specific ‘moonwalker’ neurons in the brain control backward walking
  • how the brain processes simple hot and cold stimuli to keep this little animal away from danger (my own area of research)
  • and many more.

Of course, we can do these kinds of experiments in a number of animal models. But the unique advantage of the fly is that we can pinpoint every single neuron that’s important for a particular response or behavior, precisely map how they connect to each other and silence or activate each one to figure out how the whole thing works.

Don’t forget the flies

Just a few weeks back, Chicago hosted the Genetics Society of America’s annual “fly meeting,” bringing together thousands of fly scientists from around the world. One of the topics discussed was that, in this tough economic climate, funding cuts to public agencies are disproportionately hurting research on fruit flies in favor of more “translational” approaches – that is, research that has more immediate practical applications.

It’s worth remembering that neither Mendel nor Morgan expected that their work could have a direct impact on medicine. Yet when, hopefully soon, we manage to “cure” cancer – a genetic disease par excellence – they should be among the very first people receiving a thank you note from humanity.

Flies still have a lot to contribute to our understanding of all aspects of biology. As with much basic research, the direct benefits from this work may be around the corner, or may take a little longer to find. It would be a big mistake to curb fruit fly research now that the flies are just getting warmed up to tackle some of the most interesting questions in biology.

Hierdie artikel is oorspronklik gepubliseer op The Conversation. Publication does not imply endorsement of views by the World Economic Forum.

Author: Marco Gallio is an Assistant Professor of Neurobiology at Northwestern University.

Image: Flies are seen at Jakarta’s main garbage dump at Bantar Gebang district. REUTERS/Beawiharta.


Blow flies may be the answer to monitoring environment in a non-invasive manner

INDIANAPOLIS -- They say you are what you eat that’s the case for every living thing, whether it’s humans, animals, insects, or plants, thanks to stable isotopes found within.

Now a new study explores these stable isotopes in blow flies as a non-invasive way to monitor the environment through changes in animals in the ecosystem. The work by IUPUI researchers Christine Picard, William Gilhooly III, and Charity Owings, was published April 14 in PLOS ONE.

A postdoctoral researcher at the University of Tennessee-Knoxville, Owings was a Ph.D. student at IUPUI at the time of the study.

“Blow flies are found on all continents, with the exception of Antarctica. Therefore, blow flies are effectively sentinels of animal response to climate change in almost any location in the world,” said Gilhooly, who said the disruptions of climate change has increased the need to find new ways to monitor animals’ environments without disturbing them.

The multidisciplinary research between the biology and earth science departments began more than four years ago to answer a fundamental ecological question: “What are they (blow flies) eating in the wild,” Owings asked. “We know these types of flies feed on dead animals, but until now, we really had no way of actually determining the types of carcasses they were utilizing without actually finding the carcasses themselves.”

“Stable isotopes are literally the only way we could do that in a meaningful way,” Picard added.

Stable isotopes include carbon, nitrogen, hydrogen, oxygen, among others. Stable isotopes are found in the food we eat, and become a part of us.

“When we eat a hamburger, we are getting the carbon isotopes that came from the corn that the cow was fed. Flies do the exact same thing,” said Gilhooly.

Picard and Owings set out to collect blow flies in Indianapolis, Yellowstone National Park and the Great Smoky Mountains.

School of Science alumna, Charity Owings, Ph.D., collecting flies in the Great Smoky Mountains.

“Collecting flies is easy: have rotten meat, can travel,” said Picard. “That is it, we would go someplace, open up our container of rotten meat, and the flies cannot resist and come flying in. Collections never took longer than 30 minutes, and it was like we were never there.”

Once the flies were collected, they were placed in a high-temperature furnace to convert the nitrogen and carbon in the blow fly into nitrogen gas and carbon dioxide gas. Those gases were then analyzed in a stable isotope ratio mass spectrometer, which shows slight differences in mass to reveal the original isotope composition of the sample.

“Nitrogen and carbon isotopes hold valuable information about diet. Animals that eat meat have high nitrogen isotope values, whereas animals that eat mainly plants have low nitrogen isotope values,” said Gilhooly. “Carbon isotopes will tell us the main form of sugar that is in a diet. Food from an American diet has a distinct isotope signature because it has a lot of corn in it, either from the corn fed to domesticated animals or high fructose corn syrup used to make most processed foods and drinks. This signal is different from the carbon isotopes of trees and other plants. These isotope patterns are recorded in the fly as they randomly sample animals in the environment.”

Identifying the stable isotopes allowed the researchers to determine if the blow flies were feeding on carnivores or herbivores when they were larvae.

Christine Picard, Ph.D., collects blow flies to study changes in animal ecosystems.

“With repeated sampling, one can keep an eye on animal health and wellness,” said Picard. “If the flies indicate a sudden, massive increase in dead herbivores --and knowing what we know right now that typically the herbivores are readily scavenged and not available for flies, that could tell us one of two things: herbivores are dying yet the scavengers don’t want anything to do with them as they may be diseased, or there are more herbivores than the carnivores/scavengers, and perhaps the populations of these animals has decreased.”

In Indianapolis, the majority of the blow fly larvae feed on carnivores. The researchers speculate this is because of the large number of animals being hit and killed by cars, making carcass scavenging less likely and more available to the blow flies to lay their eggs.

However, they were surprised by their findings in the national park sampling sites, where the larvae fed on carnivores instead of the herbivores, despite the herbivores' greater numbers. They speculate the competition is higher to scavenge for the larger herbivore carcasses and not readily accessible for the blow flies.

In addition, Picard, Gilhooly and Owings observed the impact of humans on animals. The carbon isotopes from the flies found the presence of corn-based foods in Indianapolis, which was expected, but also in the Great Smoky Mountains. With the Smokies being the most visited park in the country, opportunistic scavengers have greater access to human food.

This wealth of information provided by the blow flies will be fundamental to detecting changes within the ecosystem,” said Picard.

Charity Owings, Ph.D., collecting flies in Yellowstone National Park.

“This research has the potential to revolutionize the way biologists investigate important global issues, especially in the era of climate change,” said Owings. “Researchers will no longer be restricted to finding animals themselves, which is a daunting task the flies can easily find the animals and then can be ‘called in’ by scientists.”

In addition to providing a real-time early warning system for tracking ecosystem change in response to climate change, the distribution of blow flies makes this approach useful in almost any location.

“Compared to other approaches, the relative ease of collecting the flies and measuring their isotopes means that ecosystem monitoring efforts can be rapidly deployed in any environmentally sensitive region,” said Gilhooly.

This multidisciplinary research, which is making a meaningful contribution to science, wouldn’t have happened without having the genuine interest to learn more about the other’s science.

“This work would never have happened without that ability to share passions, and learn from each other. I am very thankful for Bill’s expertise, and I have learned tons from him, but also, we have learned more about our fly, and now have the ability to take this knowledge and apply it to current, immediate problems,” said Picard.

“We've got great teamwork that combines the different scientific skills needed for this study. The crazy thing about this work is that it's so interdisciplinary that it was difficult to convince others that the idea would work. I'm glad we stuck with it and were able to demonstrate the utility of this new method,” said Gilhooly.

About IU Research

IU's world-class researchers have driven innovation and creative initiatives that matter for 200 years. From curing testicular cancer to collaborating with NASA to search for life on Mars, IU has earned its reputation as a world-class research institution. Supported by $854 million last year from our partners, IU researchers are building collaborations and uncovering new solutions that improve lives in Indiana and around the globe.


Kyk die video: Zing mee met Juf Roos Alle Liedjes Seizoen 1 tm 4 1 Uur Special (Oktober 2022).