Inligting

Wat is hierdie kolibrieagtige insek?

Wat is hierdie kolibrieagtige insek?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Ek het sopas gesien hoe hierdie insek polen versamel van bougainvillea-bloeisels op die Griekse eiland Skyros, in die Egeïese See. Vir toekomstige verwysing, dit is in die middel van Augustus en die waarneming was omstreeks 17:00.

Ek het al 4 foto's geplaas wat ek geneem het aangesien die onbeskofte dingetjie nie die ordentlikheid gehad het om stil te sit om my 'n duidelike skoot te laat kry nie. Ek sou sê dit was omtrent 2 cm lank, beslis nie meer as 3 nie.


Kolibrie valkmot (Macroglossum stellatarum). Vir wat dit werd is, is daar ook 'n verskeidenheid sfinksmotte regoor die wêreld.

Hier is 'n foto van die gekoppelde Wikipedia-bladsy. Soos jy kan sien, lyk dit baie soos die een in joune:


Hummingbird Evolusie


“Alles omtrent kolibries is ekstreem. Hulle het hierdie ongelooflike sweefvlug, met vlerkklopfrekwensies van 60 keer per sekonde, wat moer is. Hulle het die hoogste metaboliese tempo vir hul grootte van enige gewerwelde dier, hulle is klein masjiene wat teen 'n hoë tempo op suurstof werk. Hulle het ook die grootste hippokampale formasie in die brein van enige voël, wat aan ruimtelike leer gekoppel is, vermoedelik omdat hulle dieselfde blomtrosse oor en oor besoek, en moet onthou waar en wanneer hulle mees onlangs die nektar van individuele blomme opgeslurp het. Dit is verstommend dat evolusie ’n dier tot sulke uiterstes kan neem.”

Dit is UC Berkeley-herpetoloog Jimmy McGuire in ontsag oor klein voëltjies. En nee, herpetoloog is nie 'n tikfout nie. Terwyl McGuire se spesialiteit amfibieë en reptiele is, het sy liefde en passie vir kolibries hom ver verby herps geneem.

McGuire en sy Berkeley-kollega, Robert Dudley, het verlede week 'n referaat gepubliseer oor die uiterste evolusie van kolibries. Dit is 'n wonderlike verhaal wat die klein voëls van een kontinent na 'n ander neem en dan weer terug, diversifiseer en ontwikkel oor miljoene jare. En hulle is nog nie klaar nie.

Deur gebruik te maak van DNS-data wat ingesamel is van 451 voëls wat 284 spesies kolibries en hul naaste familie verteenwoordig, het McGuire en sy kollegas die lewende groepe in 'n stamboom gerangskik, en tot die gevolgtrekking gekom dat die tak wat na moderne kolibries lei, ongeveer 42 miljoen jaar gelede ontstaan ​​het toe hulle van hul sustergroep, die windswaels en boomswaels. Dit het waarskynlik in Europa of Asië gebeur, waar kolibrieagtige fossiele gevind is wat van 28-34 miljoen jaar gelede dateer.

Op een of ander manier, sê McGuire, het kolibries hul weg na Suid-Amerika gevind, waarskynlik via Asië en 'n landbrug oor die Beringstraat na Alaska. Hulle het geen oorlewendes in hul voorvaderlike lande agtergelaat nie, maar sodra hulle Suid-Amerika sowat 22 miljoen jaar gelede getref het, het hulle vinnig uitgebrei na nuwe ekologiese nisse en nuwe spesies ontwikkel wat verteenwoordig word deur nege afsonderlike groepe wat vandag bekend staan ​​as topase, kluisenaars, mango's, briljante, kokette, bergjuwele, bye, smaragde en die enkelspesiegroep Patagona (die reuse kolibrie, Patagona gigas).

Ongeveer 12 miljoen jaar gelede het die gemeenskaplike voorouer van die bye- en bergedelsteenkolibriegroepe die sprong in Noord-Amerika gemaak—destyds, nog steeds van Suid-Amerika geskei deur 'n paar honderd myl water. Sodra hierdie kolibries sukses in die nuwe habitat gevind het, het ander kolibriesstamme hul neefs noordwaarts gevolg.

Sowat 5 miljoen jaar gelede het kolibries die Karibiese Eilande binnegeval, en het dit sedertdien nog vyf keer gedoen. Een van hierdie groepe, die bykolibries, wat in Noord-Amerika ontstaan ​​het, het aan die Karibiese inval deelgeneem, en het selfs Suid-Amerika saam met bestaande afstammelinge herkoloniseer.

Die genetiese ontleding toon dat die diversiteit van kolibries vandag steeds toeneem, met die ontstaanskoers van nuwe spesies wat uitsterwingsyfers oorskry. En ten spyte van die feit dat hulle hoofsaaklik op nektar en piepklein insekte voed, bevat sommige plekke meer as 25 spesies in dieselfde geografiese gebied.

"Wanneer dit by gewerwelde diere kom, is kolibries omtrent so uiteenlopend soos hulle kom," sê McGuire.

Een onbeantwoorde vraag, sê hy, is hoe kolibries hoegenaamd 'n houvas in Suid-Amerika gekry het, aangesien hulle vandag afhanklik is van plante wat saam met hulle ontwikkel het en unieke voedingsaanpassings ontwikkel het.

"Dit is regtig moeilik om te dink hoe dit begin het, aangesien kolibries betrokke is by hierdie ko-evolusionêre proses met plante wat gelei het tot spesialisasies wat ons tipies met kolibrieplante assosieer, soos buisvormige, dikwels rooi blomme, met verdunde nektar," verduidelik hy . “Hulle dryf die evolusie van hul eie ekosisteem. Die evolusie van kolibries het die evolusie van die Nuwe Wêreld-flora ingrypend beïnvloed deur mede-diversifikasie.”

Daar is nou 338 erkende kolibriespesies, maar daardie getal kan in die volgende etlike miljoen jaar verdubbel. "Ons is nie naby aan die maksimum aantal kolibriespesies nie," sê McGuire.


Wat is hierdie kolibrieagtige insek? - Biologie

SAN DIEGO: Die Pentagon het miljoene dollars gestort in die ontwikkeling van piepklein hommeltuie geïnspireer deur biologie - insluitend die kolibrie - elk toegerus met video- en klanktoerusting wat beelde en klanke kan opneem.

Hulle kan gebruik word om te spioeneer, maar ook om mense binne aardbewing-verfrommelde geboue op te spoor en gevaarlike chemiese lekkasies op te spoor.

Benewens die kolibrie, werk ingenieurs in die groeiende onbemande vliegtuigbedryf aan hommeltuie wat soos insekte lyk en die helikopteragtige esdoornblaarsaad.

Navorsers ondersoek selfs maniere om toesig en ander toerusting in 'n insek in te plant, aangesien dit besig is om metamorfose te ondergaan. Hulle wil die skepsel kan beheer.

Die toestelle kan uiteindelik deur polisiebeamptes en brandbestryders gebruik word.

Hul potensiële gebruik buite gevegsones laat egter vrae ontstaan ​​oor privaatheid en die gevare van die gevleuelde wesens wat in dieselfde lug as vliegtuie rondgons.

Vir nou is die meeste van hierdie toestelle net inspireerende ontsag.

Met 'n vlerkspan van 6,5 duim weeg die afstandbeheerde voël minder as 'n AA-battery en kan dit teen snelhede van tot 11 mph vlieg, net aangedryf deur die klap van sy twee vlerke. ’n Klein videokamera sit in sy maag.

Die voël kan vertikaal klim en afsak, ​​sywaarts, vorentoe en agtertoe vlieg. Dit kan kloksgewys en antikloksgewys draai.

Die meeste van alles kan dit sweef en sit op 'n vensterlys terwyl dit intelligensie insamel, sonder dat die vyand dit weet.

"Ons het amper gelag omdat ons bang was, want ons het ingeskryf om dit te doen," sê Matt Keennon, senior projekingenieur van Kalifornië se AeroVironment, wat die kolibrie gebou het.

Die Pentagon het hulle gevra om 'n sakpasvliegtuig vir toesig en verkenning te ontwikkel wat biologie naboots. Dit kan enigiets wees, het hulle gesê, van 'n naaldekoker tot 'n kolibrie.

Vyf jaar en $4 miljoen later het die maatskappy wat hy noem die wêreld se eerste kolibriespioenasievliegtuig ontwikkel. "Dit was baie skrikwekkend aan die voorkant en het so gebly vir 'n geruime tyd in die projek," het hy gesê nadat die hommeltuig deur sy kop geblaas en op sy hand beland het tydens 'n mediabetoging.

Die moeilikste uitdagings was om 'n piepklein voertuig te bou wat vir 'n lang tydperk kan vlieg en beheer word of homself beheer.

AeroVironment het 'n geskiedenis van die ontwikkeling van sulke vliegtuie.

Oor die dekades het die Monrovia, Kalifornië-gebaseerde maatskappy alles ontwikkel van 'n vlieënde meganiese reptiel tot 'n waterstofaangedrewe vliegtuig wat in staat is om in die stratosfeer te vlieg en 'n gebied groter as Afghanistan met een oogopslag te ondersoek.

Dit het 'n leier geword in die handgelanseerde hommeltuigbedryf.

Troepe gooi 'n vierpond-vliegtuig, genaamd die Raven, die lug in. Hulle het begin staatmaak op die intydse video wat dit terugstuur, en gebruik dit om padbomme op te spoor of om 'n blik te kry van wat oor die volgende heuwel of om 'n draai gebeur.

Die sukses van die kolibrie-hommeltuig "baan die weg vir 'n nuwe generasie vliegtuie met die behendigheid en voorkoms van klein voëls," het Todd Hylton van die Pentagon se navorsingsafdeling, Defense Advanced Research Projects Agency, gesê.

Hierdie hommeltuie is nie net voëls nie.

Lockheed Martin het 'n vals esdoornblaarsaad, of sogenaamde whirly bird, ontwikkel, gelaai met navigasietoerusting en beeldsensors. Die spioenasievliegtuig weeg 0,07 onse.

Aan die verste punt van die navorsingspektrum ondersoek DARPA ook die moontlikheid om lewende insekte tydens metamorfose met videokameras of sensors in te plant en dit te beheer deur elektriese stimulasie op hul vlerke toe te pas.

Die idee is dat die weermag 'n swerm goggas gelaai met spioenasietoerusting kan instuur. Die weermag kyk ook na ander gebruike.

Die hommeltuie kan ingestuur word om geboue in stedelike gevegsones te deursoek. Die polisie stel belang om hulle onder meer te gebruik om ’n gevaarlike chemiese lekkasie op te spoor.

Brandbestryders kan hulle vinnig uitstuur oor 'n ramp om beter data te kry.

Dit is moeilik om te sê wat, indien enigiets, dit uit die laboratorium sal maak, maar hul opkoms bied uitdagings en nie net met fisika nie.

Wat is die wetlike implikasies, veral met belangstelling onder die polisie in die gebruik van klein hommeltuie vir toesig, en hul potensiaal om mense se privaatheid binne te dring, vra Peter W. Singer, skrywer van die boek, "Wired for War" oor robotoorlogvoering.

Singer het gesê hierdie vrae sal toenemend bespreek word namate robotika 'n groter deel van die alledaagse lewe word.

"Dit is die ekwivalent aan die koms van die drukpers, die rekenaar, kruit," het hy gesê. "Dit is daardie skaal van verandering."


Verwysings

[1] Gill F. en Donsker D. , (reds.), IOC Wêreldvoëllys (v 7.1) , 2017, http://www.worldbirdnames.org/. Google Scholar

[2] Sabrosky C. W., “Hoeveel insekte is daar? ” Insekte: Die Jaarboek van Landbou , Amerikaanse Departement van Landbou, Washington, D. C., 1952, Hoofstuk. 1. Google Scholar

[3] Tudge C. , Die verskeidenheid van die lewe , Oxford Univ. Press, Oxford, 2000, Hfst. 10. Google Scholar

[4] Mazaheri K. en Ebrahimi A., "Eksperimentele ondersoek na die effek van akkoordwyse buigsaamheid op die aerodinamika van flappende vlerke in sweefvlug," Tydskrif vir Vloeistowwe en Strukture , Vol. 26, No. 4, 2010, pp. 544–558. doi:https://doi.org/10.1016/j.jfluidstructs.2010.03.004 0889-9746 CrossrefGoogle Scholar

[5] Jensen M. en Weis-Fogh T., "Biologie en fisika van sprinkaanvlug V. Sterkte en elastisiteit van sprinkaankutikula," Filisofiese transaksies van die Royal Society , Vol. B245, No 721, 1962, pp. 137–169. doi:https://doi.org/10.1098/rstb.1962.0008 CrossrefGoogle Scholar

[6] Rees C. J. C., "Aerodinamiese eienskappe van 'n insekvlerk-afdeling en 'n gladde vleuel in vergelyking," Natuur , Vol. 258, No. 5531, Nov. 1975, pp. 141–142. doi:https://doi.org/10.1038/258141a0 CrossrefGoogle Scholar

[7] Wootton R. J., "Vooraanstaande afdeling en asimmetriese draai in die vlerke van vlieënde skoenlappers (Insecta, Papilionoidea)," Tydskrif vir Eksperimentele Biologie , Vol. 180, 1993, pp. 105–117. JEBIAM 0022-0949 Google Scholar

[8] Wootton R. J., Herbert R. C., Young P. G. en Evans K. E., "Benaderings tot die strukturele modellering van insekvlerke," Filosofiese transaksies van die Royal Society London , Vol. B358, No 1437, 2003, pp. 1577–1587. doi:https://doi.org/10.1098/rstb.2003.1351 CrossrefGoogle Scholar

[9] Walker S. M., Thomas A. L. R. en Taylor G. K., "Fotogrammetriese rekonstruksie van hoë-resolusie oppervlaktopografieë en vervormbare vlerkkinematika van vasgemaakte sprinkane en vryvliegende sweefvlieë," Tydskrif van die Royal Society Interface , Vol. 6, No. 33, 2009, pp. 351–366. doi:https://doi.org/10.1098/rsif.2008.0245 1742-5689 CrossrefGoogle Scholar

[10] Dalton S., Borne on the Wind: The Extraordinary World of Insects in Flight , Reader's Digest Press, New York, 1975, Hfst. 1. Google Scholar

[11] Wootton R. J. , Die Meganiese Ontwerp van Insekvlerke , Wetenskaplike Amerikaner , Vol. 263, No. 5, Nov. 1990, pp. 114–120. CrossrefGoogle Scholar

[12] Willmott A. P. en Ellington C. P., “ The Mechanics of Flight in the Hawkmoth Manduca Sexta. I. Kinematika van sweef en vorentoevlug,” Tydskrif vir Eksperimentele Biologie , Vol. 200, No. 21, 1997, pp. 2705–2722. JEBIAM 0022-0949 CrossrefGoogle Scholar

[13] Ennos A. R., "Die traagheidsoorsaak van vlerkrotasie in diptera," Tydskrif vir Eksperimentele Biologie , Vol. 140, No. 1, 1988, pp. 161–169. JEBIAM 0022-0949 CrossrefGoogle Scholar

[14] Bergou A. J. , Xu S. en Wang Z. J. , " Passive Wing Pitch Reversal in Insect Flight ," Tydskrif vir Vloeistofmeganika , Vol. 591, 2007, pp. 321–337. doi:https://doi.org/10.1017/S0022112007008440 JFLSA7 0022-1120 CrossrefGoogle Scholar

[15] Kang C. en Shyy W., " Passiewe vlerkrotasie in buigsame flappende vlerk-aerodinamika ," Verrigtinge van die 30ste AIAA Toegepaste Aerodinamika-konferensie , AIAA Vraestel 2012-2763, Junie 2012. SkakelGoogle Scholar

[16] Song J., Luo H. en Hedrick T. L., "Wing-pitching Mechanism of Hovering Ruby-throated Hummingbird," Bioinspirasie en Biomimetika , Vol. 10, No. 1, 2015, Vraestel 016007. doi:https://doi.org/10.1088/1748-3190/10/1/016007 1748-3182 CrossrefGoogle Scholar

[17] Coleman D., Benedict M., Hrishikeshavan V. en Chopra I., "Ontwikkeling van 'n robotkolibrie wat in staat is om beheerde te beweeg," AHS Joernaal , Vol. 62, No. 3, 2017, pp. 1–9. doi: https://doi.org/10.4050/JAHS.62.032003 Google Scholar

[18] Keennon M., Klingebiel K., Won H. en Andriukov A., "Ontwikkeling van die Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle," 50ste AIAA Lugvaartwetenskappe-vergadering , AIAA Vraestel 2012-0588, Januarie 2012. SkakelGoogle Scholar

[19] Phan H. V. en Park H. C., "Afgeleë beheerde vlug van 'n insekagtige stertlose flapperende-vlerk-mikrolugvoertuig," Verrigtinge van die 12de Internasionale Konferensie oor Alomteenwoordige Robotte en Ambient Intelligence (URAI 2015) , KINTEX, Goyang City, Suid-Korea, Okt. 2015, pp. 315–317. Google Scholar

[20] Karasek M. , " Robotic Hummingbird: Design of a Control Mechanism for a Hovering Flapping Wing Micro Air Vehicle ," Ph.D. Proefskrif, Universite Libre De Bruxelles, 2014. Google Scholar

[21] Combes S. A. en Daniel T. L., "In dun lug: Bydraes van aërodinamiese en traagheid-elastiese kragte tot vlerkbuiging in die Hawkmoth Manduca Sexta," Tydskrif vir Eksperimentele Biologie , Vol. 206, No. 17, 2003, pp. 2999–3006. doi:https://doi.org/10.1242/jeb.00502 JEBIAM 0022-0949 CrossrefGoogle Scholar

[22] Daniel T. en Combes S. , “ Buig vlerke en vinne: buig deur traagheid of vloeibare dinamiese kragte? ” Integrerende en Vergelykende Biologie , Vol. 42, No. 5, 2002, pp. 1044–1049. doi: https://doi.org/10.1093/icb/42.5.1044 Crossref Google Scholar

[23] Combes S. A. en Daniel T. L. , " Buigstyfheid in insekvlerke I. Skaalvorming en invloed van vlerkvervening ," Tydskrif vir Eksperimentele Biologie , Vol. 206, No. 17, 2003, pp. 2979–2987. doi:https://doi.org/10.1242/jeb.00523 JEBIAM 0022-0949 CrossrefGoogle Scholar

[24] Combes S. A. en Daniel T. L., “ Buigstyfheid in Insekvlerke II. Ruimtelike verspreiding en dinamiese vlerkbuiging,” Tydskrif vir Eksperimentele Biologie , Vol. 206, No. 17, 2003, pp. 2989–2997. doi:https://doi.org/10.1242/jeb.00524 JEBIAM 0022-0949 CrossrefGoogle Scholar

[25] Kruyt J.W., Quicazán-Rubio E.M., van Heijst G.H., Altshuler D.L. en Lentink D., "Kolibrievlerkdoeltreffendheid hang af van aspekverhouding en vergelyk met helikopterrotors," Tydskrif van die Royal Society Interface , Vol. 11, No. 99, 2014, pp. 1–12.doi:https://doi.org/10.1098/rsif.2014.0585 1742-5689 CrossrefGoogle Scholar

[26] Warrick D. R. , Tobalske B. W. en Powers D. R. , " Lift Production in the Hovering Hummingbird ," Verrigtinge van die Royal Society B , Vol. 276, No. 1674, 2009, pp. 3747–3752. doi:https://doi.org/10.1098/rspb.2009.1003 CrossrefGoogle Scholar

[27] Zhao L., Huang Q., Deng X. en Sane S. P., "Aerodinamiese effekte van buigsaamheid in flappende vlerke," Tydskrif van die Royal Society Interface , Vol. 7, No. 44, 2010, pp. 485–497. doi:https://doi.org/10.1098/rsif.2009.0200 1742-5689 CrossrefGoogle Scholar

[28] Maybury W. J. en Lehmann F., "Die vloeistofdinamika van vlugbeheer deur kinematiese fasevertraging-variasie tussen twee robotinsekvlerke," Tydskrif vir Eksperimentele Biologie , Vol. 207, No. 26, 2004, pp. 4707–4726. doi:https://doi.org/10.1242/jeb.01319 JEBIAM 0022-0949 CrossrefGoogle Scholar

[29] Truong Q.T., Phan H.V., Park H.C. en Koh J.H., "Effek van vlerkdraai op aerodinamiese prestasie van flapperende vlerkstelsel," AIAA Tydskrif , Vol. 51, No. 7, 2013, pp. 1612–1620. doi:https://doi.org/10.2514/1.J051831 AIAJAH 0001-1452 SkakelGoogle Scholar

[30] Ho S., Nassef H., Pornsinsirirak N., Tai Y. en Ho C., "Onvaste aërodinamika en vloeibeheer vir flappende vlerkvliegtuie," Vordering in Lugvaartwetenskappe , Vol. 39, No. 8, 2003, pp. 635–681. doi:https://doi.org/10.1016/j.paerosci.2003.04.001 PAESD6 0376-0421 CrossrefGoogle Scholar

[31] Colmenares D. , Kania D. , Zhang W. en Sitti M. , " Voldoenende vlerkontwerp vir 'n flapperende vlerk-mikrolugvoertuig ," IEEE Internasionale Konferensie oor Intelligente Robotte en Stelsels , IEEE Publ., Piscataway, NJ, 2015, pp. 32–39. Google Scholar

[32] Wu P., Stanford B. K., Sallstrom E., Ukeiley L. en Ifju P. G., "Struktuurdinamika en aerodinamika-metings van biologies geïnspireerde buigsame flapende vlerke," Bioinspirasie en Biomimetika , Vol. 6, No. 1, 2011, Vraestel 016009. doi:https://doi.org/10.1088/1748-3182/6/1/016009 1748-3182 CrossrefGoogle Scholar

[33] Sallstrom E. en Ukeiley L., "Vloeimetings in die nasleep van buigsame flappende vlerke," Verrigtinge van die 28ste AIAA Toegepaste Aerodinamika-konferensie , AIAA Vraestel 2010-4945, Junie–Julie 2010. SkakelGoogle Scholar

[34] Banerjee A., Ghosh S. K. en Das D., "Aerodinamika van flappende vlerk by lae Reynolds-getalle: kragmeting en vloeivisualisering," Internasionale Wetenskaplike Navorsingsnetwerk, ISRN Meganiese Ingenieurswese , Vol. 2011, 2011, Referaat 162687. doi:https://doi.org/10.5402/2011/162687 Google Scholar

[35] Singh B. en Chopra I., "Insek-gebaseerde sweef-bekwame klapvlerke vir mikro-lugvoertuie: eksperimente en analise," AIAA Tydskrif , Vol. 46, No. 9, Sept. 2008, pp. 2115–2135. doi:https://doi.org/10.2514/1.28192 AIAJAH 0001-1452 SkakelGoogle Scholar

[36] Maglasang J., Isogai K. en Goto N., "Aërodinamiese studie- en meganisasiekonsep vir klapvlerk-mikrolugvoertuie," Memoirs van die Fakulteit Ingenieurswese, Kyushu Universiteit , Vol. 66, No. 1, 2006, pp. 71–82. MEKSAS 0023-6160 Google Scholar

[37] Smith M. J. C., " Simulating Moth Wing Aerodynamika: Towards the Development of Flapping-Wing Technology ," AIAA Tydskrif , Vol. 34, No. 7, 1996, pp. 1348–1355. doi:https://doi.org/10.2514/3.13239 AIAJAH 0001-1452 SkakelGoogle Scholar

[38] Chaudhuri A., Haftka R. T., Ifju P., Chang K., Tyler C. en Schmitz T., "Eksperimentele flappende vlerkoptimalisering en onsekerheidskwantifisering deur gebruik te maak van beperkte monsters," Strukturele en multidissiplinêre optimalisering , Vol. 51, No. 4, 2015, pp. 957–970. doi:https://doi.org/10.1007/s00158-014-1184-x SMOTB4 1615-1488 CrossrefGoogle Scholar

[39] Ren H., Wu Y., Huang P. G. en Evans J., "PIV-studie van vloeivelde in die naby-wakker streek van 'n flappende vlerk-mikrolugvoertuig," Verrigtinge van die 49ste AIAA Lugvaartwetenskappe-vergadering, insluitend die New Horizons Forum en Lugvaart-uitstalling , AIAA Vraestel 2011-571 , Januarie 2011 . SkakelGoogle Scholar

[40] Nan Y., Karasek M., Lalami M. E. en Preumont A., "Eksperimentele optimering van vlerkvorm vir 'n kolibrie-agtige flappende vlerk-mikrolugvoertuig," Bioinspirasie en Biomimetika , Vol. 12, No. 2, 2017, Vraestel 026010. doi:https://doi.org/10.1088/1748-3190/aa5c9e 1748-3182 CrossrefGoogle Scholar

[41] Ames R. G., "Op die vloeiveld en kragte wat gegenereer word deur 'n reghoekige vlerk wat 'n matige verminderde frekwensie klap by lae Reynolds-getal," Ph.D. Proefskrif, Georgia Inst. van Tegnologie, 2009. Google Scholar

[42] Ellington C. P., "Die aerodinamika van swewende insekvlug. Deel VI: Hysbak- en kragvereistes,” Filosofiese transaksies van die Royal Society of London. Reeks B , Vol. 305, No. 1122, 1984, pp. 145–181. doi:https://doi.org/10.1098/rstb.1984.0054 PTRBAE 0962-8436 Crossref Google Scholar

[43] Lehmann F.-O. en Dickinson M. H., "Die veranderinge in kragvereistes en spierdoeltreffendheid tydens verhoogde kragproduksie in die vrugtevlieg Drosophila Melanogaster," Tydskrif vir Eksperimentele Biologie , Vol. 200, No. 7, 1997, pp. 1133–1143. JEBIAM 0022-0949 Google Scholar

[44] Sun M. en Tang J., "Hys- en kragvereistes van sweefvlug in Drosophila virilis," Tydskrif vir Eksperimentele Biologie , Vol. 205, No. 16, 2002, pp. 2413–2427. JEBIAM 0022-0949 Google Scholar

[45] Wu P., Ifju P. en Stanford B., "Klappende vlerk-strukturele vervorming en stukragkorrelasiestudie met buigsame membraanvlerke," AIAA Tydskrif , Vol. 48, No. 9, Sept. 2010, pp. 2111–2122. doi:https://doi.org/10.2514/1.J050310 AIAJAH 0001-1452 SkakelGoogle Scholar

[46] Tran J., Sirohi J., Gao H. en Wei M., "Verminderde ordemodellering van vragte en vervorming van 'n buigsame klapvlerk," AIAA 56ste AIAA/ASCE/AHS/ASC-strukture, strukturele dinamika en materiaalkonferensie , AIAA Vraestel 2015-0177 , 2015 . SkakelGoogle Scholar

[47] Simons E. L. R., Hieronymus T. L. en O'Connor P. M., "Dwarssnitgeometrie van die voorledemaatskelet en vlugmodus in Pelecaniform Birds," Tydskrif vir Morfologie , Vol. 272, No. 8, 2011, pp. 958–971. doi:https://doi.org/10.1002/jmor.v272.8 JOMOAT 0362-2525 CrossrefGoogle Scholar

[48] ​​Ennos A. R., "Die belangrikheid van torsie in die ontwerp van insekvlerke," Tydskrif vir Eksperimentele Biologie , Vol. 140, No. 1, 1988, pp. 137–160. JEBIAM 0022-0949 CrossrefGoogle Scholar

[49] Weis-Fogh T., "Vinnige skattings van vlugfiksheid by swewende diere, insluitend nuwe meganismes vir hysbakproduksie," Tydskrif vir Eksperimentele Biologie , Vol. 59, No. 1, 1973, pp. 169–230. JEBIAM 0022-0949 CrossrefGoogle Scholar

[50] Lehmann F. O., Sane S. P. en Dickinson M., "Die aërodinamiese effekte van vlerk-vlerkinteraksie in flappende insekvlerke," Tydskrif vir Eksperimentele Biologie , Vol. 208, No. 16, 2005, pp. 3075–3092. doi:https://doi.org/10.1242/jeb.01744 JEBIAM 0022-0949 CrossrefGoogle Scholar

[51] Ring A. V. , Produkhandleiding vir DaVis 8.2 , StrainMaster Davis 8.4 , LaVision GmbH, Göttingen Duitsland, Januarie 2017. Google Scholar

[52] Groen M. A., "PIV and Force Measurements on the Flapping-Wing MAV DelFly II: An Aerodynamic and Aeroelastic Investigation into Vortex Development," Master of Science-tesis, Delft Univ. of Technology , Delft, Nederland, 2010. Google Scholar

[53] Benedict M., Coleman D., Mayo D. B. en Chopra I., "Eksperimente op stewige vlerk wat sweef-bekwame flappende kinematika ondergaan by Reynolds-getalle op mikro-lugvoertuig-skaal," AIAA Tydskrif , Vol. 54, No. 4, 2016, pp. 1145–1157. doi:https://doi.org/10.2514/1.J052947 AIAJAH 0001-1452 SkakelGoogle Scholar

[54] Percin M., Hu Y., van Oudheusden B. W., Remes B. en Scarano F., "Wing Flexibility Effects Clap and Fling," International Journal of Micro Air Vehicles , Vol. 3, No. 4, 2011, pp. 217–227. Google Scholar

[55] Ramasamy M. en Leishman J. G., "Fase-gesloten deeltjiebeeldsnelheidsmetings van 'n flappende vlerk," Tydskrif vir Vliegtuie , Vol. 43, No. 6, Nov.–Des. 2006, pp. 1867–1875. doi: https://doi.org/10.2514/1.21347 SkakelGoogle Scholar

[56] Warrick D. R., Tobalske B. W. en Powers D. R., "Aerodinamika van die Hovering Hummingbird," Natuur , Vol. 435, No. 7045, Junie 2005, pp. 1094–1097. doi: https://doi.org/10.1038/nature03647 CrossrefGoogle Scholar

[57] Altshuler D. L. , Princevac M. , Pan H. en Lozano J. , " Wake Patterns of the Wings and Tail of Hovering Hummingbirds ," Tydskrif vir eksperimentele vloeistowwe , Vol. 46, No. 5, 2009, pp. 835–846. doi:https://doi.org/10.1007/s00348-008-0602-5 CrossrefGoogle Scholar

[58] Benedict M. , Deflections on a Flexible Robotic Hummingbird Wing at 20 Hz , Julie 2017 , https://www.youtube.com/watch?v=HvwJQY8Clbk. Google Scholar

[59] Leishman J.G., Beginsels van Helikopter Aerodinamika , Cambridge Univ. Press, New York, 2000. Google Scholar

[60] Ennos A. R., "Funksionele vlerkmorfologie en aerodinamika van Panorpa Germanica (Insecta: Mecoptera)," Tydskrif vir Eksperimentele Biologie , Vol. 143, No. 1, 1989, pp. 267–284. JEBIAM 0022-0949 Google Scholar


Watter grootte kolibrievoerder moet ek kry?

Tensy jy baie kolibries het, kry nie die grootste kapasiteit nie, tensy jy kan verbind tot die vervanging van die nektar en die skoonmaak van die voerder wanneer dit nodig is: ten minste elke 3 dae in warm weer en 6-7 dae in koel weer.

Ek weet sommige mense sal 'n voerbak met 16 onse volmaak en dit dan vir 'n week of langer in die warm weer laat sit omdat hulle nie die nektar wil weggooi nie of omdat hulle lui is.

As jy wel die voerder met groter kapasiteit wil hê, en vind dat die kolibries dit nie so vinnig opdrink nie, kan jy dit altyd gedeeltelik vul as jy nie nektar wil mors nie.

Ja, ons sit voerders uit vir ons eie plesier, maar ook om kolibries te voer. As ons nektar uitsit wat vorm groei en fermenteer omdat ons te lui is om die nektar uit te ruil en die voerder skoon te maak, dan is dit beter om hulle glad nie te voed nie.

Kolibrievoerders, nektarresep, mierprobleme:

Om kolibries te lok:

Moet kolibrievoeders in die son of skaduwee wees?

As jy kan, plaas jou kolibrievoeders in die skadu om te verhoed dat die suikeroplossing warm word, wat swam- en/of bakteriese groei kan bevorder. Maar selfs in die skadu, moet die nektar op 'n minimum elke paar dae vervang word. As dit warmer is - 90 grade of meer - vervang die oplossing ten minste elke 2 dae. As jy geen bome vir skadu of 'n oorhang van jou huis het nie, kan jy iets bo die voerder heg om skadu te skep, soos in die video hieronder:


Hummingbird-robot wat KI gebruik om binnekort te gaan waar hommeltuie nie kan nie

WEST LAFAYETTE, Ind. & # 8212 Wat kan vlieg soos 'n voël en sweef soos 'n insek?

Jou vriendelike buurtkolibries. As hommeltuie hierdie kombinasie gehad het, sou hulle beter deur ineengestorte geboue en ander deurmekaar ruimtes kon maneuver om vasgekeerde slagoffers te vind.

Navorsers van die Purdue Universiteit het vlieënde robotte ontwerp wat soos kolibries optree, opgelei deur masjienleeralgoritmes gebaseer op verskeie tegnieke wat die voël elke dag natuurlik gebruik.

Purdue Universiteit se navorsers bou robotkolibries wat uit rekenaarsimulasies leer hoe om te vlieg soos 'n regte kolibrie doen. Die robot is omhul in 'n dekoratiewe dop. (Purdue Universiteit foto/Jared Pike) Laai beeld af

Dit beteken dat nadat hy van 'n simulasie geleer het, die robot “weet” hoe om op sy eie rond te beweeg soos 'n kolibrie sou, soos om te onderskei wanneer om 'n ontsnappingsmaneuver uit te voer.

Kunsmatige intelligensie, gekombineer met buigsame vlerke wat klap, laat die robot ook nuwe truuks aanleer. Selfs al is die robot kan’nt sien, byvoorbeeld, dit sintuie deur aan te raak oppervlaktes. Elke aanraking verander 'n elektriese stroom, wat die navorsers besef het hulle kan dop.

“Die robot kan in wese 'n kaart skep sonder om sy omgewing te sien. Dit kan nuttig wees in 'n situasie wanneer die robot dalk op 'n donker plek na slagoffers soek – en dit beteken een minder sensor om by te voeg wanneer ons die robot die vermoë gee om te sien,” het gesê Xinyan Deng, 'n medewerker professor in meganiese ingenieurswese aan Purdue.

Die navorsers sal hul werk op 20 Mei by die 2019 IEEE Internasionale Konferensie oor Robotika en Outomatisering in Montreal aanbied. 'n Video van die werk is beskikbaar via YouTube.

Hommeltuie kan nie oneindig kleiner gemaak word nie, as gevolg van die manier waarop konvensionele aerodinamika werk. Hulle sou’ nie in staat wees om genoeg hysbak te genereer om hul gewig te ondersteun.

Maar kolibries gebruik nie konvensionele aerodinamika nie – en hul vlerke is veerkragtig. “Die fisika is eenvoudig anders, die aerodinamika is inherent onstabiel, met hoë aanvalshoeke en hoë hysbak. Dit maak dit moontlik vir kleiner, vlieënde diere om te bestaan, en ook vir ons moontlik om flappende vlerkrobotte af te skaal,” het Deng gesê.

Navorsers probeer al jare lank om kolibrievlug te dekodeer sodat robotte kan vlieg waar groter vliegtuie kan’t. In 2011 het die maatskappy AeroVironment, in opdrag van DARPA, 'n agentskap binne die Amerikaanse departement van verdediging, 'n robotkolibrie gebou wat swaarder as 'n regte een was, maar nie so vinnig nie, met helikopter-agtige vlugkontroles en beperkte manoeuvreerbaarheid. Dit het vereis dat 'n mens te alle tye agter 'n afstandbeheerder moes wees.

Deng’s groep en haar medewerkers bestudeer kolibries self vir verskeie somers in Montana. Hulle het belangrike kolibrie-maneuvers gedokumenteer, soos om 'n vinnige 180-grade-draai te maak, en dit vertaal na rekenaaralgoritmes waaruit die robot kan leer wanneer dit aan 'n simulasie gekoppel is.

Verdere studie oor die fisika van insekte en kolibries het Purdue-navorsers toegelaat om robotte kleiner as kolibries – en selfs so klein soos insekte – te bou sonder om die manier waarop hulle vlieg, in te boet. Hoe kleiner die grootte, hoe groter is die vlerkflapfrekwensie, en hoe doeltreffender vlieg hulle, sê Deng.

Xinyan Deng en haar span navorsers ontwerp kolibrie-geïnspireerde tegnologie wat die huidige hommeltuie beter kan vaar in soek-en-redding-missies. Op die foto van links na regs: Fan Fei, Xinyan Deng, Jesse Roll en Zhan Tu. (Purdue Universiteit foto/Jared Pike) Laai beeld af

Die robotte het 3D-gedrukte liggame, vlerke van koolstofvesel en lasergesnyde membrane. Die navorsers het een kolibrie-robot gebou wat 12 gram weeg – die gewig van die gemiddelde volwasse manjifieke kolibrie – en nog 'n insekgrootte robot wat 1 gram weeg. Die kolibrie-robot kan meer as sy eie gewig optel, tot 27 gram.

Die ontwerp van hul robotte met 'n hoër hysbak gee die navorsers meer wikkelruimte om uiteindelik 'n battery en waarnemingstegnologie, soos 'n kamera of GPS, by te voeg. Tans moet die robot aan 'n energiebron vasgemaak word terwyl dit vlieg – maar dit sal nie veel langer wees nie, sê die navorsers.

Die robotte kon stil vlieg net soos 'n regte kolibrie doen, wat hulle meer ideaal maak vir geheime operasies. En hulle bly bestendig deur turbulensie, wat die navorsers gedemonstreer het deur die dinamiese skaal vlerke in 'n olietenk te toets.

Die robot benodig net twee motors en kan elke vlerk onafhanklik van die ander beheer, en dit is hoe vlieënde diere hoogs ratse maneuvers in die natuur uitvoer.

“'n Werklike kolibrie het veelvuldige groepe spiere om krag- en stuurhoue te doen, maar 'n robot moet so lig as moontlik wees, sodat jy maksimum prestasie op minimale gewig het,” het Deng gesê.

Robotiese kolibries sal nie net help met soek-en-redding-missies nie, maar sal ook bioloë toelaat om kolibries meer betroubaar in hul natuurlike omgewing te bestudeer deur die sintuie van 'n realistiese robot.

“Ons het uit biologie geleer om die robot te bou, en nou kan biologiese ontdekkings gebeur met ekstra hulp van robotte,” het Deng gesê.

Simulasies van die tegnologie is oopbron beskikbaar via Github.

Vroeë stadiums van die werk, insluitend die Montana kolibrie eksperimente in samewerking met Bret Tobalske ’s groep by die Universiteit van Montana, is finansieel ondersteun deur die National Science Foundation.

Hierdie werk sluit aan by Purdue se Giant Leaps-viering, met erkenning van die universiteit se wêreldwye vordering wat gemaak is in KI, algoritmes en outomatisering as deel van Purdue’ se 150ste herdenking. Dit is een van die vier temas van die jaarlange viering’s Idees Festival, ontwerp om Purdue ten toon te stel as 'n intellektuele sentrum wat werklike kwessies oplos. 

Skrywer: Kayla Wiles, 765-494-2432, [email protected]

Bron: Xinyan Deng, 765-494-1513, [email protected]

Nota aan Joernaliste: Skakels na die papiervoordrukke is in die abstrakte beskikbaar. A video of the work is available via YouTube and other multimedia can be found in a Google Drive folder. Video and photos were prepared by Jared Pike, communications specialist for Purdue University’s School of Mechanical Engineering.

Fan Fei, Zhan Tu, Jian Zhang, and Xinyan Deng

Purdue University, West Lafayette, IN, USA

Biological studies show that hummingbirds can perform extreme aerobatic maneuvers during fast escape. Given a sudden looming visual stimulus at hover, a hummingbird initiates a fast backward translation coupled with a 180-degree yaw turn, which is followed  by  instant  posture  stabilization in just under 10 wingbeats. Consider the wingbeat frequency of 40Hz, this aggressive maneuver is carried out in just 0.2 seconds. Inspired by the hummingbirds’ near-maximal performance during such extreme maneuvers, we developed a flight control strategy and experimentally demonstrated that such maneuverability can be achieved  by  an  at-scale  12-  gram hummingbird robot equipped with just two actuators. The proposed hybrid control policy combines model-based nonlinear control with model-free reinforcement learning. We use model-based nonlinear control for nominal flight control, as the dynamic model is relatively accurate for these conditions. However, during extreme maneuver, the modeling error becomes unmanageable. A model-free reinforcement learning policy trained in simulation was optimized to ’destabilize’ the system and maximize the performance during maneuvering. The hybrid policy manifests a maneuver that is close to that observed in hummingbirds. Direct simulation-to-real transfer  is achieved, demonstrating the hummingbird-like fast evasive maneuvers on the at-scale hummingbird robot.

Zhan Tu, Fan Fei, Jian Zhang, and Xinyan Deng

Purdue University, West Lafayette, IN, USA

Wings of flying animals can not only generate lift and control torques but also can sense their surroundings. Such dual functions of sensing and actuation coupled in one element are particularly useful for small sized bio-inspired robotic flyers, whose weight, size, and power are under stringent constraint. In this work, we present the first flapping-wing robot using its flapping wings for environmental perception and navigation in tight space, without the need for any visual feedback. As the test platform, we introduce the Purdue Hummingbird, a flapping-wing robot with 17cm wingspan and 12 grams weight, with a pair of 30-40Hz flapping wings driven by only two actuators. By interpreting the wing loading feedback and its variations, the vehicle can detect the presence of environmental changes such as grounds, walls, stairs, obstacles and wind gust. The instantaneous wing loading can be obtained through the measurements and interpretation of the current feedback by the motors that actuate the wings. The effectiveness of the proposed approach  is experimentally demonstrated on several challenging flight tasks without vision: terrain following, wall following and going through a narrow corridor. To ensure flight stability, a robust controller was designed for handling unforeseen disturbances during the flight. Sensing and navigating one’s environment through actuator loading is a promising method for mobile robots, and it can serve as an alternative or complementary method to visual perception.

Fan Fei, Zhan Tu, Yilun Yang, Jian Zhang, and Xinyan Deng

Purdue University, West Lafayette, IN, USA

Insects and hummingbirds exhibit extraordinary flight capabilities and can simultaneously master seemingly conflicting goals: stable hovering and aggressive maneuvering, unmatched by small scale man-made vehicles. Flapping Wing Micro Air Vehicles (FWMAVs) hold great promise for closing this performance gap. However, design and control of such systems remain challenging due to various constraints. Here, we present an open source high fidelity dynamic simulation for FWMAVs to serve as a testbed for the  design,  optimization and flight control  of  FWMAVs.  For  simulation  validation, we recreated the hummingbird-scale robot developed in our lab in the  simulation.  System  identification  was  performed  to obtain the model parameters. The force generation, open- loop and closed-loop dynamic response between simulated and experimental flights were compared and validated. The unsteady aerodynamics and the highly nonlinear flight dynamics present challenging control problems for conventional and learning control algorithms such as Reinforcement Learning. The interface of the simulation is fully compatible with OpenAI Gym environment. As a benchmark study, we present a linear controller for hovering stabilization and a Deep Reinforcement Learning control policy for goal-directed maneuvering. Finally, we demonstrate direct simulation-to-real transfer of both control policies onto the physical robot, further demonstrating the fidelity of the simulation.


What is this hummingbird-like insect? - Biologie

Pollinators aren't just bees, butterflies, beetles and bats.

They're also birds, like hummingbirds.

Ornithologists tell us that hummingbirds can easily eat their weight in a day, feasting on carbohydrates (nectar from blossoms and sugar water from feeders) and protein (insects and spiders).

The hummingbird menu includes such insects as ants, aphids, fruit flies, gnats, weevils, beetles, mites and mosquitoes. They also raid spider webs to grab a quick spider meal and any hapless insects trapped there.

We were thinking of insects and pollinators today (this blog focuses on insects and the entomologists who study them) after reading a UC Davis research paper published in the Verrigtinge van die Royal Society B that tested sugar water in hummingbird feeders.

Fact is, sugar water in hummingbird feeders can contain high densities of microbial cells but &ldquovery few of the bacteria or fungi identified have been reported to be associated with avian disease,&rdquo says community ecologist and co-author Rachel Vannette of the UC Davis Department of Entomology and Nematology.

The research is one of the first to explore the microbial communities that dwell in sugar water from feeders and compare them to those found in flower nectar and samples from live hummingbirds.

&ldquoThe potential for sugar water from hummingbird feeders to act as a vector for avian pathogens--or even zoonotic pathogens--is unknown,&rdquo said Vannette, an assistant professor in the UC Davis Department of Entomology and Nematology. &ldquoOur study is one of the first to address this public concern. Although we found high densities of both bacteria and fungi in sugar water samples from feeders, very few of the species of bacteria or fungi found have been reported to cause disease in hummingbirds.&rdquo

&ldquoSo although birds definitely vector bacteria and fungi to feeders, based on the results from this study, the majority of microbes growing in feeders do not likely pose significant health hazards to birds or humans,&rdquo Vannette said. &ldquoHowever, a tiny fraction of those microbes has been associated with disease, so we encourage everyone who provides feeders for hummingbirds to clean their feeders on a regular basis and to avoid areas where human food is prepared.&rdquo

The paper, &ldquoMicrobial Communities in Hummingbird Feeders Are Distinct from Floral Nectar and Influenced by Bird Visitation,&rdquo is the work of first author Casie Lee, a UC Davis School of Veterinary Medicine student Professor Lee Tell of the UC Davis School of Veterinary Medicine's Department of Medicine and Epidemiology Tiffany Hilfer, an undergraduate student and Global Disease Biology major and Vannette.

Lee, mentored by Vannette and Tell, led the field experiment and performed bird observations and laboratory work during a summer project funded by the Students Training in Advanced Research (STAR) and Merial Veterinary Scholars Programs.

The researchers also compared the microbes in the feeders to those in floral nectar and found they differed in microbial composition.

&ldquoBirds, feeder sugar water, and flowers hosted distinct bacterial and fungal communities,&rdquo they wrote in their abstract. &ldquoFloral nectar and feeder sugar water hosted remarkably different bacterial communities Proteobacteria comprised over 80% of nectar bacteria, but feeder sugar water contained relatively high abundance of Firmicutes and Actinobacteria, as well as Proteobacteria. Hummingbird feces hosted both bacterial taxa commonly found in other bird taxa and novel genera including Zymobacter (Proteobacteria) and Ascomycete fungi.&rdquo

The UC Davis scientists conducted their research at a private residence in Winters, attracting two hummingbird species, Calypteanna (Anna's Hummingbird) and Archilochus alexandri (Black-chinned Hummingbird) to drop net feeder traps. They mixed bottled water with conventional white granulated sugar (one part sugar and four parts water).

See more information--and photos--on their research on the UC Davis Department of Entomology website.

But back to insects and the hummingbirds that eat them. Entomologist Doug Tallamy of the University of Delaware says that "hummingbirds like and need nectar but 80 percent of their diet is insects and spiders."

Wildbirds on Line says: "I frequently put overripe bananas of my fruit feeder to attract tiny fruit flies, which in turn attract the hummers. The hummingbirds eat every fly and return in a few hours to feast on the next batch of fruit flies that discover the overripe fruit. What an easy way to observe hummers eating insects!"


Verwysings

[1] Shyy W. , Lian Y. , Tang J. , Viieru D. and Liu H. , Aerodynamics of Low Reynolds Number Flyers , Cambridge Univ. Press, New York, 2008 , Chaps. 1, 4. CrossrefGoogle Scholar

[2] Dickinson M. H. , Lehmann F. and Sane S. P. , “ Wing Rotation and the Aerodynamic Basis of Insect Flight ,” Science Journal , Vol. 284, No. 5422, 1999 , pp. 1954–1960. doi:https://doi.org/10.1126/science.284.5422.1954 SCJUAD 0582-2092 CrossrefGoogle Scholar

[3] Ellington C. P. , Berg C. , Willmott A. P. and Thomas A. L. R. , “ Leading-Edge Vortices in Insect Flight ,” Natuur , Vol. 384, No. 6610, 1996 , pp. 626–630. doi:https://doi.org/10.1038/384626a0 CrossrefGoogle Scholar

[4] Maxworthy T. , “ Experiments on the Weis-Fogh Mechanism of Lift Generation by Insects in Hovering Flight. Part 1. Dynamics of the Fling ,” Journal of Fluid Mechanics , Vol. 93, No. 1, 1979 , pp. 47–63. doi:https://doi.org/10.1017/S0022112079001774 JFLSA7 0022-1120 CrossrefGoogle Scholar

[5] Liu H. and Kawachi K. , “ A Numerical Study of Insect Flight ,” Journal of Computational Physics , Vol. 146, No. 1, 1998 , pp. 124–156. doi:https://doi.org/10.1006/jcph.1998.6019 JCTPAH 0021-9991 CrossrefGoogle Scholar

[6] Birch J. M. and Dickinson M. H. , “ The Influence of Wing Wake Interactions on the Production of Aerodynamic Forces in Flapping Flight ,” Die Tydskrif vir Eksperimentele Biologie , Vol. 206, No. 13, 2003 , pp. 2257–2272. doi:https://doi.org/10.1242/jeb.00381 CrossrefGoogle Scholar

[7] Ansari S. A. , Phillips N. , Stabler G. , Wilkins P. C. , Zbikowski R. and Knowles K. , “ Experimental Investigation of Some Aspects of Insect-Like Flapping Flight Aerodynamics for Application to Micro Air Vehicles ,” Animal Locomotion , edited by Taylor G. K. , Triantafyllou M. S. and Tropea C. , Springer, Berlin, pp. 215–236. doi:https://doi.org/10.1007/978-3-642-11633-9_18 Google Scholar

[8] Bennett L. , “ Insect Flight: Lift and Rate of Change of Incidence ,” Wetenskap , Vol. 167, No. 3915, 1970 , pp. 177–179. doi:https://doi.org/10.1126/science.167.3915.177 SCIEAS 0036-8075 CrossrefGoogle Scholar

[9] Kramer V. M. , “ Die Zunahme des Maximalauftriebes von Tragfluglen bei plotzlicher Anstellwinkelvergrosserung (Boeneffect) ,” Z. Flugtech Motorluftschiffahrt , Vol. 23, No. 7, 1932 , pp. 185–189. Google Scholar

[10] Sun M. and Tang J. , “ Unsteady Aerodynamic Force Generation by a Model Fruit Fly Wing in Flapping Motion ,” Tydskrif vir Eksperimentele Biologie , Vol. 205, No. 1, 2002 , pp. 55–70. JEBIAM 0022-0949 CrossrefGoogle Scholar

[11] Sane S. P. and Dickinson M. H. , “ The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight ,” Tydskrif vir Eksperimentele Biologie , Vol. 205, No. 8, 2002 , pp. 1087–1096. JEBIAM 0022-0949 CrossrefGoogle Scholar

[12] Sane S. P. and Dickinson M. H. , “ The Control of Flight Force by a Flapping Wing: Lift and Drag Production ,” Tydskrif vir Eksperimentele Biologie , Vol. 204, No. 15, 2001 , pp. 2607–2626. JEBIAM 0022-0949 CrossrefGoogle Scholar

[13] Dickson W. B. and Dickinson M. H. , “ The Effect of Advance Ratio on the Aerodynamics of Revolving Wings ,” Die Tydskrif vir Eksperimentele Biologie , Vol. 207, No. 24, 2004 , pp. 4269–4281. doi:https://doi.org/10.1242/jeb.01266 CrossrefGoogle Scholar

[14] Tarascio M. J. , Ramasamy M. , Chopra I. and Leishman J. G. , “ Flow Visualization of Micro Air Vehicle Scaled Insect-Based Flapping Wings ,” Journal of Aircraft , Vol. 42, No. 2, 2005 , pp. 385–390. doi:https://doi.org/10.2514/1.6055 LinkGoogle Scholar

[15] Shkarayev S. and Silin D. , “ Measurements of Aerodynamic Coefficients for Flapping Wings at 0-90 Angles of Attack ,” AIAA Journal , Vol. 50, No. 10, 2012 , pp. 2034–2042. doi:https://doi.org/10.2514/1.J051051 AIAJAH 0001-1452 LinkGoogle Scholar

[16] Mayo D. B. , Lankford J. L. , Benedict M. and Chopra I. , “ Experimental and Computational Analysis of Rigid Flapping Wings for Micro Air Vehicles ,” Journal of Aircraft , Vol. 52, No. 4, 2015 , pp. 1161–1178. doi:https://doi.org/10.2514/1.C032853 LinkGoogle Scholar

[17] Ehlers H. , Konrath R. , Wokoeck R. and Radespiel R. , “ Three-Dimensional Flow Field Investigations of Flapping Wing Aerodynamics ,” AIAA Journal , Vol. 54, No. 11, 2016 , pp. 3434–3449. doi:https://doi.org/10.2514/1.J054488 AIAJAH 0001-1452 LinkGoogle Scholar

[18] Deng S. , Percin M. and Oudheusde B. V. , “ Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements ,” AIAA Journal , Vol. 54, No. 2, 2016 , pp. 588–602. doi:https://doi.org/10.2514/1.J054403 AIAJAH 0001-1452 LinkGoogle Scholar

[19] Shkarayev S. , Maniar G. and Shekhovtsov A. V. , “ Experimental and Computational Modeling of the Kinematics and Aerodynamics of Flapping Wing ,” AIAA Journal , Vol. 50, No. 6, 2013 , pp. 1734–1747. doi:https://doi.org/10.2514/1.C032053 AIAJAH 0001-1452 AbstractGoogle Scholar

[20] Coleman D. , Gakhar K. , Benedict M. , Tran J. and Siroh J. , “ Aeromechanics Analysis of a Hummingbird-Like Flapping Wing in Hover ,” Journal of Aircraft , Vol. 55, No. 6, 2018 , pp. 2282–2297. doi:https://doi.org/10.2514/1.C034726 LinkGoogle Scholar

[21] Yeo D. , Atkins E. M. , Bernal L. P. and Shyy W. , “ Experimental Characterization of Lift on a Rigid Flapping Wing ,” Journal of Aircraft , Vol. 50, No. 6, 2013 , pp. 1806–1821. doi:https://doi.org/10.2514/1.C032168 LinkGoogle Scholar

[22] Platzer M. F. , Jones K. D. , Young J. and Lai J. C. S. , “ Flapping-Wing Aerodynamics: Progress and Challenges ,” AIAA Journal , Vol. 46, No. 9, 2008 , pp. 2136–2149. doi:https://doi.org/10.2514/1.29263 AIAJAH 0001-1452 LinkGoogle Scholar

[23] Wang Z. J. , Birch J. M. and Dickinson M. H. , “ Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations vs Robotic Wing Experiments ,” Tydskrif vir Eksperimentele Biologie , Vol. 207, No. 3, 2004 , pp. 449–460. doi:https://doi.org/10.1242/jeb.00739 JEBIAM 0022-0949 CrossrefGoogle Scholar

[24] Ramamurti R. and Sandberg W. , “ Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver ,” AIAA Journal , Vol. 39, No. 2, 2001 , pp. 253–260. doi:https://doi.org/10.2514/2.1320 AIAJAH 0001-1452 LinkGoogle Scholar

[25] Ramasamy M. , Leishman J. G. and Lee T. E. , “ Flowfield of a Rotating-Wing Micro Air Vehicle ,” Journal of Aircraft , Vol. 44, No. 4, 2007 , pp. 1236–1244. doi:https://doi.org/10.2514/1.26415 LinkGoogle Scholar

[26] Vandenheed R. B. R. , Bernal L. P. , Morrison C. L. , Gogulapati A. , Friedmann P. P. , Kang C.-K. and Shyy W. , “ Experimental and Computational Study on Flapping Wings with Bio-Inspired Hover Kinematics ,” AIAA Journal , Vol. 52, No. 5, 2014 , pp. 1047–1058. doi:https://doi.org/10.2514/1.J052644 AIAJAH 0001-1452 LinkGoogle Scholar

[27] Lakshminarayan V. K. , “ Computational Investigation of Micro-Scale Coaxial Rotor Aerodynamics in Hover ,” Ph.D. Thesis, Dept. of Aerospace Engineering, Univ. of Maryland , College Park, MD, 2009 . Google Scholar

[28] Lakshminarayan V. K. and Baeder J. D. , “ Computational Investigation of Micro Hovering Rotor Aerodynamics ,” Journal of the American Helicopter Society , Vol. 55, No. 1, 2010 , pp. 14–29. JHESAK 0002-8711 Google Scholar

[29] Thomas S. , Lakshminarayan V. K. , Kalra T. S. and Baeder J. D. , “ Eulerian-Lagrangian Analysis of Cloud Evolution Using CFD Coupled with a Sediment Tracking Algorithm ,” 67th Annual Forum Proceedings of the American Helicopter Society , American Helicopter Soc. Article No. SKU #: 67-2011-000158 , May 2011 . Google Scholar

[30] Kroninger M. C. , Harrington A. and Munson M. , “ The Influence of Streamline Curvature on Low Aspect Ratio Rotating Wings ,” 45th AIAA Fluid Dynamics Conference , AIAA Paper 2015-2765 , June 2015 . doi:https://doi.org/10.2514/6.2015-2765 LinkGoogle Scholar

[31] Koren B. , “ Upwind Schemes, Multigrid and Defect Correction for the Steady Navier-Stokes Equations ,” 11th International Conference on Numerical Methods in Fluid Dynamics , Vol. 323, edited by Dwoyer D. L. , Hussaini M. Y. and Voigt R. G. , Lecture Notes in Physics , Springer, Berlin, 1989 . doi:https://doi.org/10.1007/3-540-51048-6_52 CrossrefGoogle Scholar

[32] Ghosh D. , Medida S. and Baeder J. D. , “ Compact-Reconstruction Weighted Essentially Non-Oscillatory Schemes for Unsteady Navier-Stokes Equations ,” 42nd AIAA Fluid Dynamics Conference and Exhibit , AIAA Paper 2012-2832 , June 2012 . doi:https://doi.org/10.2514/6.2012-2832 LinkGoogle Scholar

[34] Hunt J. C. R. , Wray A. A. and Moin P. , “ Eddies, Streams, and Convergence Zones in Turbulent Flows ,” Stanford Univ. , TR 178-1 , 1988 . Google Scholar

[35] Weis-Fogh T. , Jensen M. and Pringle J. W. S. , “ Biology and Physics of Locust Flight. I. Basic Principles in Insect Flight. A Critical Review ,” Filosofiese transaksies van die Royal Society of London. Reeks B, Biologiese Wetenskappe , Vol. 239, No. 667, 1956 , pp. 415–458. doi:https://doi.org/10.1098/rstb.1956.0007 CrossrefGoogle Scholar

[36] Zheng L. , Hedrick T. and Mittal R. , “ A Comparative Study of the Hovering Efficiency of Flapping and Revolving Wings ,” Bioinspiration & Biomimetics Journal , Vol. 8, No. 3, 2013 , pp. 1–13. Google Scholar


[edit] Range

Hummingbirds are found only in the Americas, from southern Alaska to Tierra del Fuego, including the Caribbean. The majority of species occur in tropical Central and South America, but several species also breed in temperate areas. Only the migratory Ruby-throated Hummingbird breeds in continental North America east of the Mississippi River and Great Lakes. The Black-chinned Hummingbird, its close relative and another migrant, is the most widespread and common species in the western United States, while the Rufous Hummingbird is the most widespread species in western Canada. [ 12 ]

Most hummingbirds of the U.S. and Canada migrate south in fall to spend the northern winter in Mexico or Central America. A few southern South American species also move to the tropics in the southern winter. A few species are year-round residents in the warmer coastal and interior desert regions. Among these is Anna's Hummingbird, a common resident from southern California inland to southern Arizona and north to southwestern British Columbia.

The Rufous Hummingbird is one of several species that breed in western North America and are wintering in increasing numbers in the southeastern United States, rather than in tropical Mexico. Thanks in part to artificial feeders and winter-blooming gardens, hummingbirds formerly considered doomed by faulty navigational instincts are surviving northern winters and even returning to the same gardens year after year. Individuals that survive winters in the north, however, may have altered internal navigation instincts that could be passed on to their offspring. The Rufous Hummingbird nests farther north than any other species and must tolerate temperatures below freezing on its breeding grounds. This cold hardiness enables it to survive temperatures well below freezing, provided that adequate shelter and feeders are available.


Hummingbird evolution soared after they invaded South America 22 million years ago

A newly constructed family tree of the hummingbirds, published today in the journal Huidige Biologie, tells a story of a unique group of birds that originated in Europe, passed through Asia and North America, and ultimately found its Garden of Eden in South America 22 million years ago.

A volcano hummingbird (Selasphorus flammula) photographed on Cerro de la Muerte in Costa Rica. This species of bee hummingbird uses its modified tail feathers to produce sound during its aerial courtship displays. Anand Varma photo.

These early hummingbirds spread rapidly across the South American continent, evolved iridescent colors – various groups are known today as brilliants, topazes, emeralds and gems – diversified into more than 140 new species in the rising Andes, jumped water gaps to invade North America and the Caribbean, and continue to generate new species today.

“Our study provides a much clearer picture regarding how and when hummingbirds came to be distributed where they are today,” said lead author Jimmy McGuire, a UC Berkeley associate professor of integrative biology and curator of herpetology (reptiles and amphibians) in the campus’s Museum of Vertebrate Zoology.

There are now 338 recognized hummingbird species, but that number could double in the next several million years, according to the study’s authors, who come from UC Berkeley, Louisiana State University and the universities of New Mexico, Michigan and British Columbia.

“We are not close to being at the maximum number of hummingbird species,” McGuire said. “If humans weren’t around, they would just continue on their merry way, evolving new species over time.”

Hummingbird ancestors arose in Eurasia 42 million years ago

For more than 12 years, McGuire and his colleagues collected DNA data from 451 birds representing 284 species of hummingbirds and their closest relatives, ultimately sequencing six nuclear and mitochondrial genes. They used the data to arrange the living groups in a family tree, and concluded that the branch leading to modern hummingbirds arose about 42 million years ago when they split from their sister group, the swifts and treeswifts. This probably happened in Europe or Asia, where hummingbird-like fossils have been found dating from 28-34 million years ago.

Somehow, he said, hummingbirds found their way to South America, probably via Asia and a land bridge across the Bering Strait to Alaska. They left no survivors in their ancestral lands, but once they hit South America about 22 million years ago, they quickly expanded into new ecological niches and evolved new species represented by nine distinct groups known today as topazes, hermits, mangoes, brilliants, coquettes, mountain gems, bees, emeralds, and the single-species group Patagona (the Giant Hummingbird, Patagona gigas).

The Buff-tailed Sicklebill (Eutoxeres condamini), a hermit hummingbird, beside one of the flowers to which they are specialized, showing how the flower and recurved bill have co-evolved. Photo by Christopher Witt, University of New Mexico.

About 12 million years ago, the common ancestor of the bee and mountain gem hummingbird groups made the jump into North America, which at the time was still separated from South America by a few hundred miles of water. Once these hummingbirds had “prepared the ground” by initiating co-evolution with North American plants, McGuire said, they were later followed several times by other hummingbird lineages, including representatives of the mangoes and emeralds, and then by many more species when the Isthmus of Panama formed connecting South and North America about 4 million years ago.

About 5 million years ago, hummingbirds invaded the Caribbean, and did so five more times since. One of these groups, the bee hummingbirds, which originated in North America, participated in the Caribbean invasion, and even re-colonized South America alongside existing lineages. This group experienced the highest diversification rates of any hummingbird group – 15 times that of the lowest, the topazes – which is on a par with that of classic examples of rapid adaptation to a new environment (adaptive radiation).

The genetic analysis shows that the diversity of hummingbirds continues to rise today, with the origination rate of new species exceeding extinction rates. And despite the fact that they feed primarily on nectar and tiny insects, some places contain more than 25 species in the same geographic area.

“When it comes to vertebrate animals, hummingbirds are about as diverse as they come,” he said.

From herps to hummingbirds

McGuire, a herpetologist whose main interest is the evolution of reptile and amphibian diversity in Southeast Asia, became interested in hummingbird flight by accident while a graduate student at the University of Texas at Austin. While there he collaborated with Robert Dudley, an expert on hummingbird flight and now a fellow UC Berkeley professor of integrative biology, and Dudley’s student, Doug Altshuler, now at the University of British Columbia. They wanted to understand how hummingbirds are able to live at high elevations, including at over 15,000 feet in the Andes Mountains, despite the reduced air density, which makes flying harder. Such a study required, however, that they understand how the various species are related, and McGuire volunteered to do a genetic analysis to construct a phylogeny (the equivalent of a genealogy but for species).

A Giant Hummingbird (Patagona gigas), the largest of the hummingbirds, photographed in Peru. Patagona, one of the nine principal lineages of hummingbirds, is found between sea level and 15,700 feet elevation in the Andes. (Photo by Jimmy McGuire, UC Berkeley)

One unanswered question, he said, is how hummingbirds got a toehold in South America at all, since today they are dependent on plants that coevolved with them and developed unique feeding adaptations.

“It is really difficult to imagine how it started, since hummingbirds are involved in this coevolutionary process with plants that has led to specializations we typically associate with hummingbird plants, such as tubular, often red flowers, with dilute nectar,” he said. “They drive the evolution of their own ecosystem. The evolution of hummingbirds has profoundly affected the evolution of the New World flora via codiversification.”

McGuire hopes to continue hummingbird studies with his colleagues, exploring how they’ve adapted to a diverse variety of ecological niches and, in particular, how they tolerate reduced oxygen availability at high elevations.

“Everything about hummingbirds is extreme,” said McGuire, who initiated work on the current phylogenetic analysis as an assistant professor at Louisiana State University before joining the UC Berkeley faculty in 2003. “They have this incredible hovering flight, with wing beat frequencies of 60 times per second, which is nuts. They have the highest metabolic rate for their size of any vertebrate they are little machines that run on oxygen at a high rate. They also have the largest hippocampal formation in the brain of any bird, which is tied to spatial learning, presumably because they visit the same flower clusters over and over again, and must remember where and when they most recently slurped the nectar from individual flowers. It is amazing that evolution can take an animal to such extremes.”

In addition to Dudley and Altshuler, other coauthors are Christopher C. Witt of the University of New Mexico, Albuquerque J. V. Remsen, Jr., of Louisiana State University, Baton Rouge Ammon Corl of UC Berkeley and Daniel L. Rabosky of the University of Michigan, Ann Arbor.

The work was funded by the National Science Foundation (DEB 0330750, 0543556, 1146491).


Kyk die video: Hummingbird Moth facts: also known as hawk moths. Animal Fact Files (Oktober 2022).