Inligting

Hoekom is groente óf rooi óf geel?

Hoekom is groente óf rooi óf geel?



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Het jy al ooit gewonder hoekom hierdie twee kleure so gereeld voorkom? Neem hierdie: ui okkerneut aartappel wortel/pietersielie en selfs kool wat groen of rooi kan wees.

Hoekom hierdie twee pigmente? Of is dit net een pigment en dit is net sy konsentrasie wat die verskil maak?

Dankie vir enige verduidelikings!


Soos baie plante doen, doen baie groente fotosintese. Vir fotosintese speel chlorofille, wat groen is, en karotene, wat geel tot rooi is, belangrike rolle. Wanneer chlorofille minder word, sal jy dalk geel tot rooi kleur sien as gevolg van karoteen. Wanneer chlorofille afgebreek word, word hulle ligbruin. In sommige groentesoorte, soos tamaties, word likopeen, wat 'n middel van karoteensintese is, opgehoop.

https://en.wikipedia.org/wiki/Lycopene

Nog 'n gewilde pigment is antosianien, waarvan die kleur rooi tot pers is. Verskeie funksies van antosianien word voorgestel van sonskerm, tot 'n antioksidant, tot die lok van voëls in vrugte.

https://en.wikipedia.org/wiki/Anthocyanin


Baie vrugte en groente is groen wanneer hulle onryp is en word helderkleurig wanneer hulle gereed is om te eet (natuurlik nie waar vir almal nie, maar die meeste vrugte/groente wel).

Dit is waarskynlik doelbewus as 'n meganisme om aan voëls en diere te sein dat dit gereed is om te eet, sodat hulle die sade binne kan versprei.

Rooi en Geel is helder kleure wat nie gewoonlik op plante gesien word nie, behalwe vrugte/groente, en blomme (wat helderkleurig is om bye te lok en wat nog), so dit maak sin dat dit as seine gebruik kan word.

http://www.rosincerate.com/2015/07/colour-changing-fruits-and-veggies.html


Antosianiene

Britt Burton-Freeman,. Indika Edirisinghe, in Nutraceuticals, 2016

Abstrak

Antosianiene is natuurlike plantpigmente wat rooi, blou en pers kleure aan blomme, blare, vrugte en sommige groente gee. Benewens vrugte en groente wat hierdie kleure ontbloot, sluit ander bronne van inname dieetaanvullings en natuurlike kleurstowwe van voedsel en drank in. Antosianiene het 'n komplekse metaboliese lot wat uitgebreide presistemiese metabolisme insluit wat aanleiding gee tot 'n wye reeks metaboliete. Antosianiene verander die uitdrukking en aktiwiteit van sellulêre en weefselteikens wat verskeie stelsels beïnvloed wat met gesondheidsvoordele geassosieer word, insluitend teenkanker, vaskulêre, metaboliese en neuronale gesondheid. Assesserings van antosianienveiligheid en toksikologie dui daarop dat akute toksisiteit baie laag is by diere en daar is geen verslae wat nadelige gesondheidseffekte in mense aandui met verbruik van antosianiene by gewone dieetinnamevlakke nie. Tans is daar geen aanbevole innamevlak van antosianiene vir optimale gesondheid of om nadelige effekte te vermy nie, maar toekomstige navorsing en voortgesette verbruikersbelangstelling sal ongetwyfeld geleenthede bied vir dieetvoorligtingsaanbevelings.


Verwante terme:

Algemene inligting oor Luteïne

Luteïen is 'n xantofil, of hidroksikarotenoïed (C 40H56O2, Figuur 23.1). Xantofille en karotene word albei as karotenoïede gekategoriseer, wat gedefinieer word deur die basiese struktuur, C40H56, maar terwyl karotene slegs uit koolstof en waterstof saamgestel is, sluit xantofille ander elemente in. Hierdie molekules bevat verskeie dubbelbindings, wat met ROS reageer om radikale op te vang. Karotene word in die liggaam na vitamien A omgeskakel, en word daarom pro-vitamien A genoem [4]. Luteïen se eienskappe verskil egter aansienlik van dié van karotene.

FIGUUR 23.1. Chemiese struktuur van luteïen.

Luteïen word as 'n xantofil-karotenoïed gekategoriseer, en het die chemiese samestelling C40H56O2.

Luteïen is 'n fitochemikalie, wat plant-afgeleide verbindings is wat nie noodsaaklike voedingstowwe is om lewe te onderhou nie. Omdat fitochemikalieë pigmente, geur of 'n bitter smaak het, word daar oor die algemeen gedink dat dit plante help beskerm teen eksterne bedreigings, soos ultraviolet lig, patogene of wesens wat hulle eet. Plantensieme sintetiseer luteïen vanaf likopeen en α-karoteen (Figuur 23.2) [5,6].

FIGUUR 23.2. Biosintetiese pad van luteïen in plante.

Oorsig van luteïensintese. Verskeie stappe word vir vereenvoudiging weggelaat. Kortliks, luteïen word gesintetiseer deur 'n reeks tussenprodukte wat likopeen en α-karoteen insluit.

In teenstelling met plante kan diere nie luteïen sintetiseer nie. Mense en ander diere verkry luteïen uit voedsel, daarom word luteïen 'n voedselfaktor genoem. Sommige groente, soos boerenkool, spinasie en broccoli, en die gousblom wat as 'n bron vir aanvullende mikrovoedingstowwe gebruik word, kan luteïen verskaf. Eiergele bevat ook hoë vlakke van luteïen, wat deur die vroulike voël as deel van haar dieet verkry word en in die eiergeel neergelê word.

Die luteïen wat deur 'n dier ingeneem word, word in miselle opgeneem en deur enterositose uit die derm-epiteel in die bloed opgeneem. Luteïen sirkuleer dan sistemies om die lewer, long en retina te bereik [3,7,8]. In die menslike retina is luteïen gekonsentreer in die makula, die mees sentrale streek (Figuur 23.3), dus word dit 'n makulêre pigment genoem. Die ontleding van stereo-isomere van hierdie makulêre pigment het twee stereoisomere karotenoïede aan die lig gebring met identiese eienskappe aan luteïen en zeaxantien, nog 'n xantofil [4]. Luteïen is ook regdeur die retina teenwoordig, teen laer konsentrasies as in die makula [8]. Alhoewel die konsentrasie van beide pigmente die hoogste in die makula is, is daar meer zeaxantien as luteïen in die makulêre streek, terwyl meer luteïen as zeaxantien in die perifere retina [9,10] is.

FIGUUR 23.3 . Macula van die menslike fundus.

Menslike fundusfoto (A) en deursneebeeld van die makula deur OCT (B). Luteïen is ryk aan die makula, maar is ook teenwoordig in die perifere retina. (A) Die makula is die sentrale deel van die fundus. (B) ∗ dui NFL, OPL, ONL en RPE aan, in volgorde van bo na onder. OCT, optiese koherensie tomografie NFL, senuweevesellaag, bestaande uit die aksone van retinale ganglion selle OPL, buitenste plexiform laag, bestaande uit die sinapse tussen fotoreseptorselle en stroomaf neurone ANL, buitenste kernlaag, bestaande uit fotoreseptorselle RPE, retinale pigmentepiteel .

Binne die retina het resonansie Raman-beelding getoon dat luteïen die volopste voorkom in die neuronale netwerklaag (die buitenste plexiforme laag [OPL]) wat die fotoreseptorselle (die buitenste kernlaag AAN) met die sekondêre neurone verbind [11]. Omdat luteïen 'n geel-gepigmenteerde kristal is, is daar lankal gedink dat dit as 'n blouligfilter optree om retinale weefsel teen die hoë-energiekant van die sigbare spektrum te beskerm. Die feit dat luteïen volop is in die OPL, wat nader aan die glasagtige kant van die retina is as aan die fotoreseptorsellaag, stem ooreen met die idee dat luteïen lig filtreer voordat dit die fotoreseptorselle bereik, om skadelike sellulêre gebeurtenisse en visie te voorkom. verlies. Luteïen word ook gevind in die fotoreseptor buitenste segmente (OS'e), waar ligstimuli ontvang word, en in die retinale pigmentepiteel (RPE), waar OS'e gefagositiseer en herwin word. Daar word gerapporteer dat die vlak van luteïen in fotoreseptorselle twee keer die in die RPE [11,12] is.

Onlangs is 'n luteïenbindende proteïen in die retina aangemeld [13]. Hierdie proteïen is geïdentifiseer as steroïdogene akute regulatoriese domein 3 (StARD3), wat in beide die retina en RPE uitgedruk word. In die aapretina lokaliseer StARD3 na al die retinale neurone in die makulêre area, veral die keël binneste segmente en aksone, maar dit word nie in Müller gliale selle gevind nie [13] .


Tipes karotenoïede

Xantofille

Daar is twee hooftipes karotenoïede, die xantofille en die karotene. Xantofille word maklik herken aan hul geel kleur, en kom in groot hoeveelhede in blare voor. In die herfs is hierdie karotenoïede verantwoordelik vir geel blare. Xantofille gee ook kleur aan vrugte en groente soos papaja, stampmielies en perskes. Die macula lutea in die menslike retina kry sy kleur van hierdie karotenoïede, wat 'n belangrike rol in visie speel. Hulle help om die retina te beskerm teen blou en ultraviolet lig, wat geneig is om radikale ione in die weefsel te veroorsaak.

Karotene

Beta-karoteen

Beta-karoteen is 'n spesifieke karotenoïed wat plante en vrugte aangetref word. Dit het 'n rooi-oranje kleur wanneer dit geïsoleer is. Betakaroteen is die mees algemene karoteen wat in plante voorkom. By mense en ander diere word beta-karoteen 'n voorloper vir vitamien A, en moet in die dieet verteer word vir oorlewing. Betakaroteen word gevind in wortels, pampoene, patats en selfs blaargroentes soos spinasie en boerenkool. Oormatige verbruik van beta-karoteen, hoewel dit nie uitdruklik skadelik is nie, sal die vel 'n oranje kleur laat, aangesien die karotenoïed in die vetlaag net onder die vel gestoor word.

Luteïen

Luteïen is 'n xantofil wat in blaargroen plante voorkom. Luteïen is 'n geel gekleurde pigment. Dit gee geel kleur aan eiergele, en geel wortels. Soos alle karotenoïede, word dit in plante gesintetiseer. Diere kan die pigment in vet stoor, en onlangse studies het getoon dat dit 'n sekere funksie in die menslike oog kan hê. Siektes soos makulêre degenerasie kan veroorsaak word deur die liggaam se onvermoë om karotenoïede soos luteïen te inkorporeer en te gebruik.

1. Die papegaaiduiker is 'n seevarende voël wat hoofsaaklik op 'n dieet van klein aasvissies oorleef. Die aasvisse oorleef hoofsaaklik op kril, wat meestal alge eet. Papegaaiduikers het helder oranje kolle op hul snawels, wat deels veroorsaak word deur die opbou van karotenoïede. Watter skakel in die voedselketting verskaf hierdie karotenoïede?
A. Die kriel
B. Die alge
C. Die aasvis

2. Flamingo's is pienk as gevolg van die ekstra karotenoïede wat hulle in hul vere stoor. Hulle eet klein pekelgarnale, wat op hul beurt karotenoïede ophoop van die alge wat hulle eet. Wat sou gebeur as flaminke 'n dieet sonder karotenoïede gevoer word?
A. Hulle sou rooi word
B. Hulle word wit
C. Hulle sou dadelik sterf

3. Wat sal met 'n plant gebeur sonder karotenoïede?
A. Dit sal 'n groter reeks spesifieke frekwensies kan absorbeer
B. Fotosintese sou afbreek
C. Karotenoïede doen in wese niks vir die plant nie


Groentesaailing-identifikasie: Prente en beskrywings

Hier is 'n vinnige visuele gids vir sommige van die maklikste groente om van saad te groei.

Bone (paal en bos)

Die boontjiesaailing se eerste saadblare blyk dikwels hartvormig te wees. Sy ware blare sal glad wees en drie tot 'n stam gerangskik wees, met twee teenoor mekaar en een bo. Leer hoe om boontjies te kweek.


Boontjiesaailing

Beet

Met behoorlike natmaak sal beetsaailinge binne vyf dae tot twee weke na plant opkom. Jong beet het gladde, langwerpige groen blare op rooi of pienkerige/pers stamme uitgebring. Omdat verskeie saailinge uit een beet "saad" kan groei, moet jy hulle dalk dun deur sommige op grondvlak af te sny. Leer hoe om beet te kweek.


Beetsaailinge. Foto deur Tepeyac (eie werk) via Wikimedia Commons.

Broccoli (en blomkool)

Broccoli- en blomkoolsaailinge produseer twee niervormige saadblare voor hul ware blare, wat meer afgerond is en vaag getande kante kan hê. Leer hoe om broccoli en blomkool te kweek.


Broccoli saailing. Foto deur Chris Burnett.

Wortels

Wortelsaailinge in die vroegste stadiums kan met gras verwar word omdat hul saadblare, anders as sommige ander groentesaadlobbe, hoog en dun is. 'n Jong wortel se ware blare, wat hieronder getoon word, het 'n kenmerkende, varingagtige vorm. Leer hoe om wortels te kweek.


Wortel saailinge. Foto deur Victor M. Vicente Selvas (eie werk) via Wikimedia Commons.

Komkommers

Die ovaal saadblare van opkomende komkommer- en skorsieplante lyk baie eenders, maar die komkommer se ware blare sal driehoekig en gelob wees met 'n vae oppervlak en getande (getande) rande. Soos die komkommerrank ontwikkel, sal sy delikate, maar hardnekkige ranke enigiets in hul pad vasgryp en klim. Leer hoe om komkommers te kweek.


Komkommer saailing

Boerenkool kom in baie variëteite voor, met ware blare wat óf glad óf fyn gegolfde kan wees. Sy saadblare kan binne ongeveer 'n week bo die grond loer en die plante moet tot 'n voet uitmekaar verdun word wanneer hulle vyf duim hoog bereik. Die voordeel daarvan om boerenkool uit te dun, is dat jy die gesnyde saailinge in 'n slaai kan geniet! Leer hoe om boerenkool te kweek.


Kale saailinge. Foto deur Forest en Kim Starr via Wikimedia Commons.

Koolrabi

Kohlrabi - 'n Brassica - lyk aanvanklik soos saailinge van ander lede van hierdie familie, soos broccoli, blomkool en boerenkool. Totdat sy eerste ware blare verskyn, kan dit moeilik wees om dit te herken! Ware blare sal diep getande rande hê (meer as broccoli) en sy blare sal meer spits as gerond wees.


Koolrabi saailing. Foto deur Chris Burnett.

Blaarslaai

Die baie variëteite losblaar en kopslaai word gekenmerk deur hul blare. Afhangende van of die blare sag of styf, los of gebondel gaan word, sal blaarsaailinge in voorkoms verskil. Slaaisaailinge reageer goed op konsekwente water en koeler temperature en, as dit binnenshuis begin word, sal dit verhard moet word voordat dit buite geplant word. Leer hoe om blaarslaai te kweek.


Slaaisaailinge. Foto deur Tepeyac (eie werk) via Wikimedia Commons.

Jy sal nie saadblare sien wat uit ertjiesaailinge opkom nie, want anders as dié van baie ander groente, bly ertjiesaadlobbe ondergronds. Ertjies hou daarvan om te klim en sal ovaal pamflette vorm met ranke wat maklik om stutte kronkel. Leer hoe om ertjies te kweek.


Ertjie saailinge. Foto deur Rasbak (eie werk) via Wikimedia Commons.

Pampoene

Pampoen-, stampmielies-, waatlemoen- en komkommersaailinge kan moeilik wees om van mekaar te onderskei omdat hulle aan dieselfde familie behoort, die komkommers. 'n Pampoen se saadblare sal groot, plat en afgerond wees, en lyk 'n bietjie soos klein olifant-ore. Soos dit groei, sal 'n pampoen groot blare vorm en sy wingerde kan uiteindelik baie grondgebied bedek. Leer hoe om pampoene te kweek.


Pampoensaailing

Radyse

Radyse het gladde, hartvormige saadblare wat gou plek maak vir langwerpige en geskarrelde of liggies getande ware blare. Radyse groei vinnig, en dié wat in die koel dae van die lente geplant word, kan binne net drie of vier weke gereed wees om te eet. Die voedsame radyseblare, of "tops", kan sowel as die wortels geëet word. Leer hoe om radyse te kweek.


Radyse saailinge

Squash (somer en winter)

Terwyl alle stampmielies met afgeronde saadlobbe na vore kom, sal stampmielies se saailingblare volgens tipe verskil hoe meer hulle groei. ’n Somerpampoen sal stekelrige, semi-driehoekige blare met skerp rande ontwikkel. ’n Winterpampoenblaar sal oor die algemeen breër en meer afgerond wees en, terwyl dit harig is, nie stekelrig nie. Leer hoe om stampmielies te kweek.


Squash saailinge. Foto deur Belmargo2014 (eie werk) via Wikimedia Commons.

Switserse Chard

Soos beet ('n nabye familielid), produseer chard tipies 1 tot 3 saailinge per saadtros. Saailinge het smal saadblare en - afhangende van die tipe chard - rooi, wit, geel of oranje stamme. Leer hoe om Chard te kweek.


Switserse chard saailinge. Foto deur Chris Burnett.

Tamaties

Die saadblare van tamatiesaailinge is lank en smal, terwyl die ware blare geneig is om asimmetriese lobbe te hê, baie soortgelyk aan die blare van die volwasse plant. Soek drie gekoppelde (of amper gekoppelde) blare aan die einde van elke tak, met een of twee kleiner blare verder af in die tak. Die saailinge se stingels en blare kan ook met klein haartjies uitgevoer word. Leer hoe om tamaties te kweek.


Tamatiesaailing

Kom meer te wete oor tuinmaak

Vir meer inligting oor die kweek van groente, kruie, blomme, en meer, kyk na ons biblioteek met groeigidse.


Wat presies is 'n voedselkleurstof?

Kan ook reguit na die FDA gaan, wat na hulle verwys as kleur bymiddels: “'n Kleurbymiddel is 'n kleurstof, pigment of ander stof wat gemaak word deur 'n proses van sintese of soortgelyke middele, of onttrek, geïsoleer, of andersins afgelei, met of sonder intermediêre of finale verandering van identiteit, van groente, dier, of ander bronne, wat wanneer dit by 'n voedsel gevoeg kleur aan dit.”

Dit is nie die presiese bewoording nie, en die definisie sluit ook dwelms en skoonheidsmiddels in, maar dit behoort vir 'n werkende definisie te voldoen. Ander bronne, vra jy? Wel, jy kan kleure van minerale kry, en een gemagtigde kleurbymiddel kom van 'n insek! Ons’ll kry om dit.

Voedselkleurstof chemikalieë val oor die algemeen in drie kategorieë:

  • sintetiese organiese verbindings (wat die FD&C-kleure is)
  • minerale of sintetiese anorganiese kleure (soos ysteroksied)
  • natuurlike kleur van groente of diere (groente- en vrugtesappe, of kleurekstrakte).

Hoekom sit hulle kleur in kos?

Wel, dit’s nie net “hulle” wat dit doen, ons almal doen. Hoekom voeg ons tamatiepasta by 'n sous of sop? Sal tamaties nie die werk doen nie? Ons voeg tamatiepasta by, nie net vir 'n gekonsentreerde tamatiegeur nie, maar om 'n dieper, ryker ‘tamatie’ kleur te kry. Hoekom? Dit laat die kos meer aptytlik lyk, en ons oë lig ons maag net soveel as wat reuk en smaak dit doen. Ons oë gee ons die eerste oordeel en as die kos nie hierdie eerste toets slaag nie, mag ons dit nie eet nie. Kleur tel, suiwer en eenvoudig.

Dink daaroor. Van kleins af leer ons watter kleure by watter kosse pas, en verder leer ons om die helderheid van hierdie kleure met die kwaliteit van genoemde kos te assosieer. As 'n donkergroen groente lyk grysgroen en “leweloos” weet ons dis nie vars of van goeie gehalte nie. Wanneer 'n gesnyde appel bruin word, weet ons dit sit al 'n rukkie rond. Ons dink selfs 'n eier met 'n ryk donkergeel geel sal lekkerder wees as een met 'n ligte en dowwe geel geel. En wat’s meer, ons’d waarskynlik korrek wees. Maar dit is die kleure van enkelvoedsel soos hulle uit die natuur na ons toe kom. Sodra ons begin om voedsel saam te kombineer in die teenwoordigheid van hitte, sure, ens. verander die kleure, en nie altyd ten goede nie.

Allerlei dinge word by algemene huisresepte gevoeg met die doel om kleur by te voeg, dit is nie net die provinsie van vervaardigde kosse nie. Wat jy dalk nie besef nie, is dat as kleur nie by baie van die kosse wat jy koop gevoeg is nie, jy dalk geneig is om te dink dat dit van lae gehalte is, as gevolg van 'n teenstrydigheid in kleur, of die kleure wat gedemp of dof is. Paprika en borrie doen net soveel vir kleur as vir smaak. En een van die duurste voedselbestanddele wat jy kan koop, saffraan, word net soveel waardeer vir die ryk geel kleur wat dit gee as vir die geur wat dit bring.

Kleurbymiddels maak dus kos aantrekliker en lekkerder. Hulle help ons selfs om die kos wat ons koop en eet, te identifiseer. Is die helder, diep kleurstowwe wat gebruik word in vandag’s kos regtig nodig? Natuurlik nie, en dit kan moeilik wees om te regverdig, veral as die kleure uit 'n laboratorium kom in plaas van uit die natuur. Maar jy moet besef dat die eenvormigheid en aantreklikheid wat jy in vervaardigde kosse verwag het nie moontlik sou wees daarsonder nie.

Kan jy jou voorstel M&M’s sonder koskleurstowwe? Jy sou grootgeword het om dit nie te geniet om al die groenes vir laaste te stoor nie! Maar, laat’s wees meer pragmaties. Ons verwag dat 'n produk wat byvoorbeeld soos 'n aarbei smaak, die kleur van 'n aarbei moet wees. Dit is suiwer instinktief. In werklikheid is dit nie logies dat 'n drankie wat met aarbeie gegeur is die presiese kleur van 'n aarbei is nie, maar ons identifiseer die kleur met die vrug, en so “aarbei gekleurde” koeldrank, byvoorbeeld, kan meer aantreklik as helder wees aarbei koeldrank. Dit is besig om te verander namate helder drankies op die mark kom met die woord “natural” daaraan gekoppel, maar dit het sy eie bemarkingsveldtog behels.

Probeer jou eie eksperiment en vul 'n drankie met 'n vrugtegeur. Dit is nie redelik om te verwag dat dit die oorspronklike kleur van die vrug moet wees nie, maar dit is nie meer redelik om te verwag dat dit so helder soos water lyk nie! Elke geval is 'n manipulasie, of die produk’s kleur is oordrewe deur kleurstowwe, of die geur is heeltemal kunsmatig en geen kleur is oorgedra aan die produk. Dit is ook nie “natuurlik” in enige ware sin van die woord as daar 'n ware sin is nie. Die koeldrank maker kan probeer om 'n “natuurlik voorkom” pigment te gebruik, maar dit het baie gebreke aangesien hulle nie stabiel is in alle toestande nie. 'n Konsekwente kleur sal baie moeilik wees om te kry, en ongeag hoeveel verbruikers uitroep vir ‘natuurlike’ produkte, hulle verwag konsekwentheid in daardie produkte!

Die rede waarom voedselkleure by kos gevoeg word, is dieselfde rede dat professionele sjefs baie aandag gee aan hoe kos op 'n bord gerangskik word en die balans van kleure in 'n gereg. Geur- en kleurpersepsie is nou verbind. Wanneer kleurstowwe korrek gebruik word, is dit daar om die voorkoms van voedsel wat reeds van goeie gehalte en veilig is om te eet, te verbeter. Kleurstowwe moet nooit gebruik word om slegte kos te bedek nie! Die idee dat die enigste doel van voedselkleursels is om kosse estetiese aantrekkingskrag te gee, misken egter die noue verband tussen die kleur van voedsel en ons persepsie van die kwaliteit en gesondheid daarvan. Dit maak nie saak hoe belangrik dit is nie, dit is moeilik om te argumenteer dat die groot verskeidenheid kleurstowwe, waarvan sommige onbekende uitwerking op die liggaam kan hê, noodsaaklik is.

Wat is natuurlike voedselkleure?

Dit is byna onmoontlik om “natuurlike” voedselkleure op een konsekwente manier te definieer. Byvoorbeeld, karamel, 'n absolute werkesel van 'n voedselkleur, kom van organiese suikers, aminosure of amiede. Dit kan natuurlik genoem word deurdat hulle deur biologiese sisteme in die natuur geproduseer word. Maar die karamelkleur self kom nie van hierdie stelsels af nie. In plaas daarvan word die suikers of proteïene aangepas om die kleur te produseer.

Indigo blou, miskien een van die belangrikste en mees bekende plantkleurstowwe in die geskiedenis (gee die blou kleur aan blou jeans) is natuurlik, of ten minste was dit, afkomstig van 'n plantglikosied, indiese. Maar indicaan is kleurloos! Die blare van die plant moes verwerk, gehidroliseer en geoksideer word, om die indikaan 'n blou kleur te verander.

Daarom, wanneer dit kom by kleure wat van biologiese organismes kom, moet die definisie uitgebrei word anders sal die woord natuurlik alle betekenis verloor. Pigmente kan van lewende (of dooie) selle kom, maar kan op een of ander manier verander word om hul bruikbaarheid te beïnvloed.

Daar kan gesê word dat natuurlike kleure ook van minerale kom. In die 19de eeu is kleurstowwe afkomstig van minerale in voedselprodukte ingebring, en dit het tot baie ernstige gesondheidsprobleme gelei. Loodchromaat en kopersulfaat, wat gebruik word om lekkergoed en suurkool te kleur, is met arseen en ander gifstowwe besmet, wat sterftes veroorsaak het. Sommige minerale kleure word nie meer toegelaat om vir voedselkleursel gebruik te word nie, soos kalsiumkarbonaat (toegelaat in dwelms), koolstofswart, ysterchloried en ystersulfaat. Op dieselfde manier is daar 'n paar natuurlike voedselkleursels van plantaardige oorsprong wat permanent verbied word.

Natuurlike stowwe wat vir voedselkleursel gebruik is, sluit in karmyn, paprika, saffraan, borrie, wortelolie, beetekstrak en groente- en vrugtesappe. Sommige natuurlike voedingstowwe kan ook gebruik word om kos in te kleur, soos riboflavien en beta-karoteen. Verskeie natuurlike voedselkleurstowwe wat in die verlede gebruik is, is in die Verenigde State verbied:

Verbode natuurlike voedselkleure

  • Alkanet: kleurers’ bugloss, Alkanna tinctoria van die borage familie, gebruik vir 'n rooi kleurstof
  • Cudbear: Orcein, ook archil, orchil, lacmus, Citrus Red 2, en C.I. Natuurlik Rooi 28, kleurstowwe van orchella-onkruide, 'n soort korstmos
  • Houthout (skyfies en ekstrak): Haematoxylum campechianum, 'n boom met 'n donker kernhout, waaruit 'n persrooi kleurstof verkry word
  • Saffloer: Carthamus tinctorius, ook genoem Amerikaanse saffraan of bastard saffraan, die blomme maak rooi en geel kleurstowwe

Die FDA klassifiseer nie voedselkleure as kunsmatig teenoor natuurlik nie

Die publiek is baie vinnig om enigiets sinteties aan te val en omhels wat as natuurlik gesien word, maar die FDA erken nie eintlik enige tipe voedselkleurstof as natuurlik nie, want die byvoeging van enige tipe kleur by voedsel lei tot 'n kunsmatig gekleurde produk. Dit is nie te sê dat die agentskap nie sinteties vervaardigde kleure onderskei van dié wat van natuurlike bronne afkomstig is nie, net dat alle kleurstowwe onderhewig is aan veiligheidstandaarde en goedkeuring vir gebruik.

Definisie van kunsmatige kleure

Dit is in werklikheid 'n oorsaak van algemene verwarring. Mense praat van “kunsmatige kleure” terwyl hulle dink aan “kleure wat in 'n laboratorium gemaak word”, maar in werklikheid is 'n kos doelbewus meer as dit wat natuurlik in die kos teenwoordig is, kunsmatig gekleur, en dit is regtig wat bedoel word met iets wat kunsmatig gekleur word. Dit is die proses om doelbewus die kleur van voedsel te verander as sy oorspronklike voorkoms, ongeag waar die kleurstof vandaan kom. Wanneer karamelkleur by Coca Cola® gevoeg word, word dit kunsmatig gekleur, alhoewel karamelkleur van natuurlike bronne afkomstig is. Daarom is die term kunsmatige kleur beteken bloot 'n kleur wat gebruik word om kunsmatig kleur aan 'n kos te gee. Soos hierbo genoem, word die term kunsmatig dikwels uitruilbaar met sintetiese gebruik, maar sy gebruik is nie tegnies korrek nie.

Wat hulle ook al genoem word, daar is sekere natuurlike kleure wat vrygestel is van sertifisering en permanent gelys is vir voedselgebruik. Dit beteken wel dat “natuurlike” kleure nie onderhewig is aan een of ander tipe voormarkgoedkeuringsproses nie, net dat hierdie spesifieke kleure nie deur die FDA gesertifiseer hoef te word nie. Die FDA klassifiseer kleure as óf gesertifiseer of vrygestel van sertifisering. Volgens die agentskap:

Gesertifiseerde kleure word sinteties vervaardig (of mensgemaak) en wyd gebruik omdat hulle 'n intense, eenvormige kleur gee, goedkoper is en makliker meng om 'n verskeidenheid skakerings te skep. Daar is nege gesertifiseerde kleurbymiddels wat goedgekeur is vir gebruik in die Verenigde State. Gesertifiseerde voedselkleure voeg gewoonlik nie ongewenste geure by kos nie.

Kleure wat vrygestel is van sertifisering sluit pigmente in wat afkomstig is van natuurlike bronne soos groente, minerale of diere. Natuur-afgeleide kleur bymiddels is tipies duurder as gesertifiseerde kleure en kan onbedoelde geure by kos voeg. Voorbeelde van vrygestelde kleure sluit in annatto-ekstrak (geel), gedehidreerde beet (blourooi tot bruin), karamel (geel tot bruin), beta-karoteen (geel tot oranje) en druiweskilekstrak (rooi, groen).

Hoekom is die term kunsmatige kleur so belangrik?

Jy dink dalk dat om alle sintetiese kleurstowwe “kunsmatig” te noem en natuurlik afgeleide kleure “nie kunsmatig” te noem nie, volkome sin maak, ten spyte van bogenoemde. Kom ons dink 'n scenario waarin voedseletikettering hierdie gebruik van die term kunsmatig toelaat. Sê 'n koeldrankmaker gebruik “natuurlike” karamelkleursel en dalk beetkleursel. Daarom verklaar hulle op die etiket: Geen kunsmatige kleure nie! Hierdie koeldrankmaker, verward, meen die gebrek aan kunsmatige kleure maak dat hy nie hoef te noem dat kleurbymiddels in sy produk gebruik is nie. Nou, jy, die verbruiker, is nie ingelig oor die ware bestanddele in die produk nie. Geen kunsmatige kleure is in hierdie geval dubbelsinnig nie, aangesien die algemene konnotasie daarvan aanvaar sou word dat geen kleur, hoegenaamd, by die produk gevoeg is nie, terwyl dit in werklikheid was. Dit is eenvoudiger om bloot te sê dat alle bygevoegde kleure kleurbymiddels is en daarom as “kunsmatig beskou moet word.”

Dit bring ons by hoe kleure op voedseletikette gelys kan word. Vir sertifisering vrygestelde voedselkleure, soortgelyk aan geure, kan spesifieke kleure by die bestanddeellys gevoeg word of nie. As EEN spesifieke kleur gelys is, moet alle kleure gelys word. Alle spesifieke kleure hoef egter nie gelys te word nie en 'n “toepaslike verklaring” kan gebruik word, soos “kleur bygevoeg.” Onder die FD&C-wet:

  • Artikel 403(k) van die FD&C-wet bepaal dat as 'n voedsel 'n kunsmatige kleur bevat, dit 'n etiket moet dra “wat daardie feit vermeld. Spesifiek, die terme “Kunsmatig gekleur,” “Kunskleur bygevoeg,” *”kleur bygevoeg,”* of 'n ewe insiggewende stelling moet gebruik word wat duidelik die byvoeging van 'n kleur by 'n kossoort aandui , behalwe waar regulasies spesifieke verklaring van die kleur met gewone of gewone naam vereis. FDA sal nie aandring op die gebruik van die woord “kunsmatig” met die verklaring van kleur as 'n bestanddeel *wanneer* die verklaring die kleur identifiseer deur spesifieke algemene of gewone naam en volgens funksie. Dus word terme soos “gekleur met _” of “_ (kleur)” (die spasie wat gevul word met die spesifieke kleurnaam soos annatto, beetpoeier, betakaroteen, ens.) as bevredigend beskou.
  • Artikel 403(i)(2) van die FD&C-wet laat toe dat 'n kleur as sodanig op 'n voedseletiket gelys word sonder om spesifiek die kleur wat gebruik word, te noem.
  • 21 CFR 74.705(d)(2) bepaal dat alle voedselsoorte, insluitend botter, kaas en roomys wat FD&C Yellow No. 5 bevat, spesifiek die teenwoordigheid van hierdie kleurbymiddel in die lys bestanddele moet verklaar.

Voedselkleur bygevoeg, natuurlike kleur of enige soortgelyke terme wat die woorde kos of natuurlik bevat, kan nie gebruik word nie. Hierdie terme kan geneem word om te beteken dat die kleur 'n natuurlike kleur in die kos is. As jy daaroor dink, kan jy verstaan ​​dat iemand die term “voedselkleur,” byvoorbeeld kan neem om te beteken dat die kleur 'N KOS IS. Net so, as 'n etiket bloot die verklaring “natuurlike kleure,”, kan 'n verbruiker dink dat die vervaardiger bloot sê dat “slegs die natuurlike kleur van die kos teenwoordig is”. Dit wil sê dat die kleure natuurlik is in teenstelling met die komende kleure! Die FDA beskou alle bygevoegde kleure as lei tot kunsmatig gekleurde kos, en maak dus beswaar daarteen dat enige bygevoegde kleur as “natuurlik” of “kos verklaar word.” 4

Gesertifiseerde kleurbymiddels, soos FD&C Blue No. 1, FD&C Yellow No. 6, ens. moet ALMAL in die bestanddele gelys word. 'n Afkorting kan egter gebruik word, soos “Blue No. 1” vir FD&C Blue No. 1 of “Yellow no. 1” vir FD&C Yellow No. 6. FD&C het egter 'n spesiale voorbehoud: “Voedsel vir menslike gebruik wat FD&C Yellow No. 5 bevat, insluitend botter, kaas en roomys, moet spesifiek die teenwoordigheid van FD&C Yellow No. 5 deur die kleurbymiddel as FD&C Yellow No. 5 onder die lys bestanddele te lys.” 1 5

Gesertifiseerde natuurlike voedselkleursels

Die lys hieronder gee die natuurlik afgeleide kleure wat vrygestel is van sertifisering. Sekere van hierdie kleure word gelys omdat hulle as 'n kleurbymiddel in voer vir hoenders, salm gebruik word om 'n sekere kleur kenmerk aan die vel of vleis te gee, of kleure wat in kat- en hondekos gebruik word. Daar is regulasies oor die totale bedrag wat gebruik kan word, maar daardie getalle is nie ingesluit nie. Sien bedrae hier

  • Algemeel, gedroogde – Slegs hoendervoer
  • Annatto-uittreksel – GMP*
  • Astaxanthin & # 8211 Salmonid vis voer slegs
  • Astaxanthin dimethyldisuccinate & # 8211 Salmonid vis voer slegs
  • Beetsap (as groentesap) & # 8211 GMP
  • Beetpoeier (Gedehidreerde beet) & # 8211 GMP
  • Beta-Apo-8′-karotenale & # 8211 Algemene gebruik
  • Betakaroteen, natuurlike en sintetiese & # 8211 GMP
  • Canthaxanthin & # 8211 Algemene gebruik
  • Karamel & # 8211 GMP
  • Karmyn & # 8211 GMP
  • Wortel olie & # 8211 GMP
  • Kochenille uittreksel & # 8211 GMP
  • Corn endosperm oil – Chicken feed only
  • Cottonseed flour, toasted partially defatted cooked – GMP
  • Ferrous gluconate -Ripe olives only – GMP
  • Ferrous lactate – Ripe olives only – GMP
  • Fruit juice – GMP
  • Grape color extract – Nonbeverage food only
  • Grape skin extract (enocianina) – Still and carbonated drinks and ades, beverage bases and alcoholic beverages
  • Haematococcus algae meal – Salmonid fish feed only.
  • Synthetic iron oxide – Sausage casings for humans cat & dog food
  • Lycopene, tomato extract or concentrate – GMP
  • Mica-based pearlescent pigment – 1.25% by weight in cereals, confections and frostings, gelatin desserts, hard and soft candies (including lozenges), nutritional supplement tablets and gelatin capsules, and chewing gum.
  • Paprika & Paprika oleoresin – GMP
  • Paracoccus pigment – Salmonid fish feed only
  • Phaffla yeast – Salmonid fish feed only.
  • Riboflavin – GMP
  • Saffron – GMP
  • Sodium copper chlorophyllin – Citrus-based dry beverage mixes only
  • Tagetes (Aztec marigold) meal and extract – Chicken feed only
  • Titanium dioxide – = 1.0% by wt. of food
  • Turmeric & Turmeric oleoresin – GMP
  • Ultramarine blue – Salt for animal feed only
  • Vegetable juice – GMP

* GMP Stands for Good Manufacturing Practices. This designation as to use, means that the color can be generally used in amounts required to gain a desired effect, as consistent with good manufacturing practices

Where do those pretty colors in vegetables and fruits come from, anyway?

When things go right, it’s true, nature can make foods of a more pleasing color than the Jelly Belly people could ever hope to. Despite this, there is a synthetic food dye, Citrus Red No. 2 that is permitted for use solely to color the skins of oranges, as long as those oranges are not going to be processed in any way. Incidentally, this is the only synthetic colorant that the Center for Science in the Public Interest did not petition to be banned. Apparently, CFSAN is not aware of all the hyperactive kids with an orange peel licking habit!

So, besides the occasional cheat, where do the real colors in fruits and vegetables come from? The green colors in plants come from chlorophylls, which are pigments in leafy vegetables, fruits, algae, and photosynthetic bacteria (cyaonbacteria) which absorbs light and uses the energy to synthesize carbohydrates from carbon dioxide and water. IT can also impart color to food and when isolated is a deep green.

Carotenoid pigments, such as carotenes and xanthophylls have color ranging from yellow to a dark, almost crimson red. They give yellow and orange colors to fruits and vegetables. Beta carotene, perhaps the most well known, is what makes carrots orange. Perhaps less familiar, astaxanthin gives the flesh of salmon its pink color, derived from the algae that the salmon eat. Lycopene is another carotenoid, found in tomatoes and red peppers. Over 100 different types of carotenoid have been isolated and identified but only three are commonly used for food coloring: beta carotene, apocarotenal (shown above as Beta-Apo-8′-carotenal), and canthaxanthin. Most of these used for food coloring are synthetically manufactured and do not need to be batch certified. In fact, today, more than 90% of colors added to foods are synthetic.

  • Beta carotene – orange to yellow color, general use.
  • Apacarotenal – comes from spinach and citrus fruits, is a precursor to Vitamin A like beta carotene but 50% less pro-vitamin activity. Orange to orange red color. Tends to be used along with annato in fat based foods such as margarine, salad dressing, dairy products, etc.
  • Canthaxanthin – the active substance in tanning pills, it builds up in the panniculus gives quite a fake looking a golden orange color to the skin. This use and the build up of the substance in the retinas called its use in foods into question, but the amounts used in tanning pills is much, much greater, and the crystal build up is reversible after cessation of tanning pill use. Permitted for general food use in the U.S. In the U.K, it’s only permitted for use in Saucisses de Strasbourg, as well as poultry feeds. Red color.

Red, violet, and blue colors come from antosianiene. These are polyphenolic compounds in flowers, fruits, and vegetables. Lots of anthocyanins are present in berries like blueberries, blackberries, raspberries, strawberries, and grapes, and black currants. Besides being famed, along with carotenoids, for their antioxidant properties, they are used widely to color candies and soft drinks.

Part of the names of many substances are prefixs or suffixes that imply a certain color. For instance chloro- in chlorophyll comes from the Greek chloros meaning a yellow-green color. Die -cyanin suffix in anthocyanin comes from the Greek kyanos meaning a blue color. Die xanth in xanth- in xanthophyll comes from the Greek xanthos meaning a yellow color.

Some other color words you may be familiar with:

  • Flavin : As in riboflavin, from the Latin flavus meaning pale-yellow.
  • Mela– : As in melanin, from the Greek melas meaning black (although not all melanins are black).
  • Lute– : As in Lutein, from the Greek word luteus meaning a yellow color.

What are the problems with these colors?

Chlorophylls are unstable to heat and insoluble in water. So, chlorophyll, usually as copper chlorophyllin, also sold as a dietary supplement, is only useful as an added color, not a primary one.

Anthocyanins are unstable outside an acid pH range. Carotenoids, always associated with chlorophyll, are unstable pigments and are sensitive to light, oxygen, and peroxide. Some are soluble in water, the lychromes, but others, lipochromes, are not. Likewise, some are stable in acid and some are not, etc. Besides their stability and uniformity, naturally derived colors may also add an undesired flavor to food.

Synthetic colors are stronger, give more intense colors, and they can be used in smaller quantities to give the same effect. They are also often less expensive. When this is taken into account with the stability and lower cost, it is no wonder they are used so extensively over naturally derived colorings.

What about that food color from an insect?

That would be the infamous Cochineal extract, as well as carmine. These are derived from the dried female insect, Dactylopius coccus costa, which is commonly known as the chochineal. These beetles live on certain cacti, mostly in Peru but also in Chile, Bolivia, and the Canary Islands. They are manually harvested twice a year, sun dried, and crushed. The color is extracted with an aqueous alcohol solution to derive a cochineal extract which can be made into different products both powder and liquid. Or, it can be further processed to produce carmine. The active pigment in cochineal extract and carmine is carminic acid. This coloring imparts a red, orange or pink color to foods and are used in meat, candies, beverages, ice cream, dairy products, and cosmetics.

There are some people who are sensitive to cochineal extract, carmine, or carminic acid. Although for most natural colorings, it is not necessary for labels to name the specific color, a new rule was made for cochineal extract and carmine on January 5, 2009, requiring the declaration by name of both colors on all food and cosmetic labels sold in the United States. The ingredients list of products containing these colors must use the common names, “cochineal extract” or “carmine.” These and any other colors that require specific declaration must be declared separately and not as “artificial color” etc.

Starbucks recently fell under fire because of its use of cochineal extract in its Strawberries and Creme Frappuccino, which enraged vegetarians, since the company had claimed that frappucinos could be made vegan with the simple addition of soy milk. The company responded that the coloring was used as part of a drive to get away from artificial ingredients and although the strawberry base is not a vegan product, it helps to move away from artificial dyes.

Here we see, again, the inappropriate use of the word ‘artificial’ as cochineal extract IS an artificial coloring. What the company means is synthetic dyes.

Although the reports of allergic reaction to these extracts are real, opponents and fear mongers, in their usual disingenuous way, wrongly report that “crushed up beetles” are being added to food, which is far from the truth, and a bit ridiculous.

What was the first food to which color was officially added in the U.S.?

Most likely, butter. The coloration of dairy products, in general, was the first to be subject to governmental regulation. Butter does not always come out the same color. Due to the cow’s feed butter color changes from winter to summer. In the winter, when the cow’s eat dried grains, the color will tend to be a pale yellow, while in the summer, when they eat green grasses, it will be a deep yellow. Margarine, on the other hand, is always a pale, bland, white, unless a color is added. You may have guessed, and rightly, that the summer butter (actually “spring butter”) has a better flavor. So coloring added to butter makes all butter look like spring butter, even though all butter is not created equal.

An annatto color (see achiote) is added to butter to give a consistent product, and most of us expect a deeper yellow color. When yellow color was added to margarine, then called oleomargarine (some people still call margarine oleo), the dairy industry was threatened as margarine then became indistinguishable from butter to most consumers. The butter industry charged that colored margarine was nothing more than a way to defraud consumers by disguising the margarine as butter (this was not the only charge..safety and sanitation was also challenged). Thus began one of the most telling examples of the power and importance of added colorings in foods.

There is no doubt that margarine would have never had such success had it remained colorless, a fact not lost on the dairy industry. In 1886, Congress enacted a statute that levied a special tax on margarine. The reason given was that oleomargarine was an ‘artificial substitute’ for natural butter, and was a serious danger to health. Although many charges were made against margarine, it is obvious that the actual purpose of the legislation was to protect the dairy industry against competition, which had only recently begun to process milk and cheese in factories on a large scale technological basis. By the law, manufacturers, wholesalers, and retailers of oleomargarine had to be licensed and were made to pay an annual tax of $600,000, $480,000 and $48.00, respectively. Not only that but margarine itself was taxed at 2 cents a pound. Later, in 1902, colored margarine scared the pants off the dairy people, and the act was amended so that any margarine that was artificially colored yellow was taxed at 10 cents a pound while if the margarine was left uncolored or colored a different color, it was taxed only 1/4 cent. Yes, you read right, if you colored your margarine green, they taxed it much less.

Despite the handicaps that margarine was given, it still ended up being consistently cheaper than butter and was not subject to the shortages the dairy industry was. Especially during World War II, butter was in short supply and there were price controls on dairy products. Also, the dire health warnings about margarine never came to pass (people were supposed to drop dead by the dozens). After the war, some consumer groups lobbied for removal of the taxes on margarine. In March, 1950, the licensing fees and taxes were repealed, but certain requirements were put in place. The original bill had been prefaced with:

“Yellow oleomargarine resembles butter so closely that it lends itself to substitution for or confusion with butter and in many cases cannot be distinguished from butter by the ordinary consumer. The manufacture, sale, or serving of yellow oleomargarine creates a condition conducive to substitution, confusion, fraud, and deception, and one which if permitted to exist tends to interfere with the orderly and fair marketing of essential foods in commerce.”

So, although the Bill allowed the use of yellow margarine in private homes, it said:

“..the manufacture, transportation, handling, possession, sale, use, or serving of yellow oleomargarine in commerce, or after shipment in commerce, or in connection with the production of goods for commerce, or which affects, obstructs, or burdens commerce or the free flow of goods in commerce, is declared unlawful.”

This was just about as vague as it could get, but the Bill underwent some changes so that:

  • All licensing fees and taxes were removed, but
  • All yellow margarine sold must be packaged and each package must cleary identify itself as margarine “in type or lettering at least as large as any other type or lettering on such label.”
  • When colored margarine was to be served in a restaurant, the establishment must display a notice “prominently and conspicuously” that margarine was being served
  • Each margarine serving in public eating establishments must be kept in triangular packages that were labelled as margarine

The enforcement of these provisions was placed under jurisdiction of the Food and Drug Administration and the Act was signed by President Truman on March 16, 1950. Many probably thought that the repeal of the taxes came about because the federal government came to its senses and realized it had overstepped its bounds, but it was more the changing power of competing interest and public opinion, which had no problem with cheap, yellow, margarine.

How Does the FDA Classify Colors?

The FDA classifies color additives as either straight color dyes, lakes, of mixtures. Straight colors are color additives that have not been mixed or chemically reacted with any other substance (for example, FD&C Blue No. 1 or Blue 1).

Dyes dissolve in water and come in the form of powders, granules, liquids or other special-purpose forms. They are be used in beverages, dry mixes, baked goods, confections, dairy products, pet foods and a variety of other products.

Lakes are formed by chemically reacting straight colors with precipitants and substrates (for example, Blue 1 Lake). Lakes for food use must be made from certified batches of straight colors. (One exception is carmine, which is a lake made from cochineal extract.) Lakes for food use are made with aluminum cation as the precipitant and aluminum hydroxide as the substratum.

Lakes are the water-insoluble form of the dye. Lakes are more stable than dyes and are ideal for coloring products containing fats and oils or items lacking sufficient moisture to dissolve dyes. Typical uses include coated tablets, cake and doughnut mixes, hard candies and chewing gums.

Mixtures are color additives formed by mixing one color additive with one or more other color additives or non-colored diluents, without a chemical reaction (for example, food inks used to mark confectionery).

For food colors, white, black, and grey are also considered colors. Also, a chemical that added to a food and which reacts with another substance to form a color may also be considered a color additive. For example, dihydroxyacetone (DHA), when applied to the skin, reacts with the protein of the skin to impart color. Even though DHA is colorless, it acts as a color additive when used for this purpose and is regulated as a color additive.

What are synthetic food dyes?

In 1856, W.H. Perkins derived synthetic colors from coal tars, and opened the first synthetic coloring factory, to make a mauve or aniline purple color. Others soon made similar dyes and they quickly came to be used to color foods, drugs, and cosmetics. Because these dyes were first produced from by-products of coal processing, they were known as “coal-tar colors of coal-tar dyes. Later in 1860, came a major breakthrough when Peter Geis discovered the diazonium coupling reaction. Soon a great number of colors were being made from coal tar and other petroleum derivatives, such as para red, lithal red, and hansa yellow. These began to be used in food by the start of the 1900’s. Red No. 3 (now infamous) was introduced in 1905.

By 1938, about 200 synthetic colors were listed by the FDA on a provisional basis. Most of these remained until 1960. In all there are about 700 of these coal-tar dyes.

What are FD&C colors?

FDA regulations apply to not only food but to dietary supplements, drugs, and cosmetics. Since color dyes are also used in drugs and cosmetics, as well as food, and not all the same dyes are permitted for use in all regulated products, there must be some way to separate the colors into definable categories.

Therefore, FD&C colors are coloring compounds which are approved for use in food, drugs, and cosmetics. D&C colors are permitted to use in drugs meant for internal use and for cosmetics which may come into contact with mucous membranes. And then there are external D&C colors, which can only be used for externally applied drugs (and for cosmetics) but not for use on lips or that may come into contact with mucous membranes.

What are some synthetic FD&C Colors that have been banned through the years?

The following chart lists some of the FD&C colors that were originally provisionally listed and then delisted later on.

FD&C Color Common Name Year Listed Year Banned
Red No. 1 Ponceau 3R 1907 1961
Red No. 2 Amaranth 1907 1976
Orange No. 1 Orange 1 1907 1956
Yellow No. 1 Napthol Yellow S 1907 1959
Green No. 2 Light Green SD Yellowish 1907 1966
Yellow No. 3 Yellow AB 1918 1959
Green No. 1 Guinea Green B 1922 1966
Red No. 4 Ponceau SX 1929 1976
Yellow No. 2 Napthol Yellow S 1939 1959
Orange No. 2 Orange SS 1939 1956
Red No. 32 Oil Read XO 1939 1956
Violet No. 1 Benzyl Violet 4B 1950 1973

In addition to these, numerous D&C colors have banned from use.

What Synthetic Colors are Now Allowed?

Currently, there are 12 permanently listed colors for use in food, of these, notice there are actually only seven basic certified dyes. The others are lakes of these dyes. In addition, are citrus Red No. 2 which is only allowed to be used on the skins of oranges, and orange B, which is only allowed in sausage and hot dog casings. These last two, then, have limited use restrictions. All together, this makes 9 certified colors, of which 7 are permitted for general use. Most of these colors are also listed for use in drugs and cosmetics, although most cannot be used for the eye area, (exceptions noted). A link is provided to a further overview of some of the colors below.

    – Food, drugs and cosmetics, including drugs and cosmetics for eye area – GMP
  • FD&C Blue #1 Aluminum Lake – Drugs and cosmetics for eye area – GMP – Food and ingested drugs – GMP, sutures
  • FD&C Blue #2 Aluminum Lake on alumina – Bone cement
  • FD&C Green #3 – Food, drugs and cosmetics – GMP
  • FD&C Red #3 – Food and ingested drugs – GMP May no longer be used in cosmetics, external drugs, and lakes
  • FD&C Red #40 and its Aluminum Lake – Food, drugs and cosmetics, including drugs and cosmetics for eye area – GMP. Other lakes for food, drugs and cosmetics are also permanently listed
  • FD&C Yellow #5 – Food, drugs and cosmetics, including drugs and cosmetics for eye area – GMP
  • FD&C Yellow #5 Aluminum Lake – Drugs and cosmetics for eye area – GMP – Food, drugs and cosmetics – GMP
  • Citrus Red #2 – Skins of mature oranges – ≤ 2 ppm by wt. of whole fruit, Orange B – Surfaces and casings of frankfurters or sausages – ≤ 150 ppm by wt. of finished product 12
  • FD&C Lakes – Provisionally listed. May be prepared from any of the above certified FD&C colors, except FD&C Red #3 – GMP

The chart below gives the approximate shade of each of the 7 certified dyes.

Kleur Skaduwee
FD&C Red 3 Pink shade
FD&C Red 40 Red shade
FD&C Yellow 5 Yellow shade
FD&C Yellow 6 Orange shade
FD&C Blue 1 Blue shade
FD&C Blue 2 Dark Blue shade
FD&C Green 3 Bluish green shade

How do they Mix FD&C Certified Colors to make Other Desired Colors?

There are blend formulas, by weight, used to make commonly desired shades, such as black, lime, strawberry, or orange. Of all the colors, black is probably the hardest to make, as even slight variations in the blend can throw off the shade. And yes, “black” and “white” are considered colors when it comes to food additives.

Blends of Blue No. 1 and Yellow No. 5 will make almost any shade of green. Blends of Yellow No. 6, Yellow No. 5, and Red No. 40 will produce almost any shade of orange. Increasing the amount of Yellow No. 5 in the blend will give a lighter and yellower shade and increasing the Red No. 40 will cause the shade to become a deeper red.

Blends of Red No. 2 and Blue No. 1 will produce almost any shade of grape. To make almost any shade of red, Red No. 2, Red No. 3, and small amounts of Yellow 6 and Blue 1 can be used. The following table gives a listing of certified color blends by weight.

Color Shade Blue No. 1 Red No. 2 Red No. 3 Red No. 40 Yellow No. 5 Yellow No. 6 Blue No. 2
Swart 12.3 7.3 26.8 53.6
Deep Blue 60 40
Caramel Brown 5 26 49 20
Chocolate Brown 7.5 28 26.5 38
Medium Green 35 65
Mint Green 45 55
Lemmetjie 1 99
Medium Orange 3 27 70
Amber/Orangeade 100
Bluish Grape 15 85
Reddish Grape 10 90
Grape/wine 12 59 30
Cherry Red 60 40
Aarbei 83 3 14
Pienk 95 14
Egg Yellow 1 86 14
Lemon Yellow 100

Adapted from Reineccius, 1994.

What kinds of food are most likely to use food colors?

The following list gives the foods that use the highest amount of food colors, including a brief description of their use.

Beverages

The beverage industry is probably the number one user of food colorants, and the certified FD&C colors are by far the main types of colorings used, except for colas and root beers, which use caramel coloring. The table below lists the typical FD&C colors that might be found in some common flavored beverages. When two colors are listed, such as “yellow no. 6 and red no. 40”, it means that these two colors are combined to produce the desired color of the beverage. Cola and root beer, as mentioned, use caramel coloring and are not included in the table.

Beverage Flavor Typical FD&C Colors Used
Orange Yellow No. 6 or Yellow No. 6 and Red No. 40
Kersie Red No. 40 and Blue No. 1
Druif Red No. 40 and Blue No. 1
Aarbei Red No. 40
Suurlemoen Yellow No. 5
Lemmetjie Yellow No. 5 and Blue No. 1

Bakery Products

Bakery products use combinations of certified and natural colors to obtain their colors. Doughs, cookies, sandwich fillings, icings, coating, and ice cream cones may all employ colorings.

Lekkergoed

Candy uses many certified and natural colors, sometimes mixed to obtain a certain hue or because the candy comes in different colored pieces. For instance, Hershey’s Good and Plenty candies use the above-mentioned carmine and Red 40.

Dairy Products

Just about all ice creams and sherberts contain artificial colors. Remember, the term “artificial color” refers to any coloring added to a food. Chocolate ice cream may be the most common exception. Butter, margarine, and some cheeses use annatto beta-carotene.

Dry Mixes (such as baking mixes)

Although you probably aren’t surprised to find that powdered gelatins and puddings use artificial colors, you may not have realized that cake and pancake mixes often use them as well.

Pet Foods

Pet food are under the jurisdiction of the FD&C Act. Iron oxide has been used traditionally. And certified colors are often used in dry extruded pet foods.

What are the food colors I get at the grocery store made of?

Most grocery stores sell little boxes of assorted liquid food colors. They are made with combinations of the seven certified synthetic dyes that are allowed to be used in foods. Typically, there are four colors: green, yellow, red, and blue, in an aqueous solution

The red color will likely be Red No. 40 and Red No. 3, for a “regular red” color. A deeper red, like “cherry red” might be only Red. No. 40.

The yellow might be a mixture of Yellow No. 5 and Red No. 40 or just Yellow No. 5 for a less orange shade.

The green color might be Yellow No. 5 and Blue No. 1. Blue might be Blue No. 1 and Red. No. 40.


What is Carotene

Carotene is one of the two types of carotenoids present in plants responsible for the orange color of the plant. Generally, carotenoids are organic pigment only produced by photosynthetic organisms including plants, algae, and bacteria. The main function of carotenoids is to serve as accessory pigments in photosynthesis. Although animals cannot synthesize carotenoids inside their body, these compounds play a key role as antioxidants and anti-inflammatory molecules.

Figure 1: Orange Color in Carrots

Furthermore, the main structural feature of carotenes used to distinguish them from xanthophyll is the absence of any oxygen atoms in the molecule. Also, there are four main types of carotenes as β-carotene, α-carotene, and lycopene. Mainly, β-carotene and, to a certain extent, α-carotene are responsible for the synthesis of vitamin A inside the animal body. Looking at the sources, β-carotene occurs in cantaloupe, mangoes, papaya, carrots, sweet potatoes, spinach, kale, and pumpkin while α-carotene occurs in pumpkin, carrots, tomatoes, collards, tangerines, winter squash, and peas. Whereas, lycopene occurs in watermelons, tomatoes, guavas, and grapefruit.


Groen

Chlorophyll pigments give plants their green color, and several changes happen when a green vegetable goes into boiling water. First, a brighter green color develops, caused by the expansion of gases and their escape from spaces between plant cells. The collapse of these rather cloudy pockets of gas reveals the bright-green chloroplasts within the cells. A second color change occurs in response to acidic water: The magnesium ion in the center of the chlorophyll molecule is replaced with a hydrogen atom, causing the green to dull. Chlorophyll-a becomes gray-green pheophytin-a, and chlorophyll-b turns into yellowish pheophytin-b. If the boiling water is slightly alkaline, then chlorophyll stays greener. Fried vegetables change to a duller green color when temperatures reach 140 degrees Fahrenheit. The heat damages chloroplasts, releasing natural cell acids to turn green into olive-green.


Using Yellow Watermelon

There are many uses for yellow watermelon, largely the same as red watermelon. [5]

  • The consistency is the same, as is the summary nature of this fruit, making it a popular addition to fruit salads and fruit smoothies.
  • You can also juice yellow watermelon for a nutrient-dense and powerfully sweet beverage .
  • They are good to eat raw, or as a base for a light, refreshing salad.
  • You can also cut these watermelons up and serve slices at your next summer party!

Why the confusion?

In the United States, firm varieties of sweet potatoes were produced before soft varieties. When soft varieties were first grown commercially, there was a need to differentiate between the two. African slaves had already been calling the ‘soft’ sweet potatoes ‘yams’ because they resembled the yams in Africa. Thus, ‘soft’ sweet potatoes were referred to as ‘yams’ to distinguish them from the ‘firm’ varieties.

Large sweet potatoes are ploughed up for migrant workers to pick and sort according to size at Kirby Farms in Mechanicsville, VA. U.S. Department of Agriculture, 2013. USDA Flickr Photostream.

Today the U.S. Department of Agriculture requires labels with the term ‘yam’ to be accompanied by the term ‘sweet potato.’ Unless you specifically search for yams, which are usually found in an international market, you are probably eating sweet potatoes!

Field workers evaluating high yielding yam varieties in a research farm. External link International Institute of Tropical Agriculture (IITA) Image Gallery.

Published: 11/19/2019. Author: Science Reference Section, Library of Congress


Kyk die video: L1 filmpje over kromme groenten (September 2022).